TY - JOUR
T1 - Mineralogy and PGE geochemistry of chromitites and peridotites of the sapat complex in the indus suture zone, northern Pakistan
T2 - implications for magmatic processes in the supra-subduction zone
AU - Ullah, Zaheen
AU - Li, Huan
AU - Khan, Asad
AU - Faisal, Shah
AU - Dilek, Yildirim
AU - Förster, Michael W.
AU - Farhan, Muhammad
AU - Ashraf, Umar
AU - Khattak, Salman Ahmed
AU - Rehman, Gohar
AU - Hussain, Syed Asim
PY - 2023
Y1 - 2023
N2 - The Sapat Complex in Northern Pakistan contains remnants of the northern Neo-Tethys Ocean, presently exposed along the Indus Suture Zone. The mantle peridotites of the Sapat Complex include harzburgites, dunites, and subordinate lherzolites. Harzburgites are the dominant peridotite variety over dunites. The dunites are hosted by harzburgites and occur exclusively as ‘envelopes’ surrounding chromitite pods. The podiform chromitites show disseminated, banded, and massive textures. Chromitites exhibit variable Cr# [Cr/(Cr + Al)] and Mg# [Mg/(Mg + Fe2+)], which range from 0.76 to 0.77, and from 0.64 to 0.66, respectively, while TiO2 contents are <0.2 wt.%. These features perhaps reflect crystallization of the chromian spinel from a boninitic magma. Similarly, chromian spinel in peridotites manifest a wide range of Cr# and Mg#, from 0.49 to 0.83 and 0.41 to 0.57, respectively, and are characterized by very low TiO2 values, averaging at 0.1 wt.%. Chromian spinel of chromitites and peridotites of the Sapat Complex have also very low Fe3+# (<0.01), which indicate their crystallization under low oxygen fugacities. The platinum group elements (PGE) distributions show high (Os + Ir + Ru)/(Rh + Pt + Pd), very low Pd/Ir values, and are defined by a prominently fractionated chondritic normalized PGE pattern, hence, this deposit is a typical example of an ophiolitic chromitite. The studied peridotites are highly depleted in PGE compared to chondritic values. The PdN/IrN values, averaging to 1.5 in dunites are unfractionated, while PGE spidergrams of harzburgites and lherzolites depict minor positive slopes, a minor positive Ru anomaly, and have average PdN/IrN values of 2.3 and 2.4, respectively. Furthermore, the harzburgites, dunites, and lherzolites display generally flat chondritic and primitive mantle normalized PGE patterns, and therefore, are nearly identical to highly depleted mantle peridotites. The mineralogical and PGE geochemical imprints of Sapat Complex chromitites and peridotites establish a strong affinity to supra-subduction zone ophiolites. Moreover, calculated parental melts of the chromitites and various geochemical discrimination diagrams elucidate that the chromitites were derived from boninitic magma produced by melting of depleted mantle peridotites in an oceanic arc, characterized by low oxygen fugacity, similar to a supra-subduction zone tectonic setting. This research highlights the use of mineralogy and geochemical compositions of chromitites and peridotites to reveal deep magmatic processes in a supra-subduction zone environment.
AB - The Sapat Complex in Northern Pakistan contains remnants of the northern Neo-Tethys Ocean, presently exposed along the Indus Suture Zone. The mantle peridotites of the Sapat Complex include harzburgites, dunites, and subordinate lherzolites. Harzburgites are the dominant peridotite variety over dunites. The dunites are hosted by harzburgites and occur exclusively as ‘envelopes’ surrounding chromitite pods. The podiform chromitites show disseminated, banded, and massive textures. Chromitites exhibit variable Cr# [Cr/(Cr + Al)] and Mg# [Mg/(Mg + Fe2+)], which range from 0.76 to 0.77, and from 0.64 to 0.66, respectively, while TiO2 contents are <0.2 wt.%. These features perhaps reflect crystallization of the chromian spinel from a boninitic magma. Similarly, chromian spinel in peridotites manifest a wide range of Cr# and Mg#, from 0.49 to 0.83 and 0.41 to 0.57, respectively, and are characterized by very low TiO2 values, averaging at 0.1 wt.%. Chromian spinel of chromitites and peridotites of the Sapat Complex have also very low Fe3+# (<0.01), which indicate their crystallization under low oxygen fugacities. The platinum group elements (PGE) distributions show high (Os + Ir + Ru)/(Rh + Pt + Pd), very low Pd/Ir values, and are defined by a prominently fractionated chondritic normalized PGE pattern, hence, this deposit is a typical example of an ophiolitic chromitite. The studied peridotites are highly depleted in PGE compared to chondritic values. The PdN/IrN values, averaging to 1.5 in dunites are unfractionated, while PGE spidergrams of harzburgites and lherzolites depict minor positive slopes, a minor positive Ru anomaly, and have average PdN/IrN values of 2.3 and 2.4, respectively. Furthermore, the harzburgites, dunites, and lherzolites display generally flat chondritic and primitive mantle normalized PGE patterns, and therefore, are nearly identical to highly depleted mantle peridotites. The mineralogical and PGE geochemical imprints of Sapat Complex chromitites and peridotites establish a strong affinity to supra-subduction zone ophiolites. Moreover, calculated parental melts of the chromitites and various geochemical discrimination diagrams elucidate that the chromitites were derived from boninitic magma produced by melting of depleted mantle peridotites in an oceanic arc, characterized by low oxygen fugacity, similar to a supra-subduction zone tectonic setting. This research highlights the use of mineralogy and geochemical compositions of chromitites and peridotites to reveal deep magmatic processes in a supra-subduction zone environment.
KW - Pakistan
KW - platinum group elements
KW - podiform chromitites
KW - sapat complex
KW - supra-subduction zone
UR - http://www.scopus.com/inward/record.url?scp=85135243655&partnerID=8YFLogxK
U2 - 10.1080/00206814.2022.2106519
DO - 10.1080/00206814.2022.2106519
M3 - Article
AN - SCOPUS:85135243655
SN - 0020-6814
VL - 65
SP - 1719
EP - 1744
JO - International Geology Review
JF - International Geology Review
IS - 10
ER -