TY - JOUR
T1 - Modeling boron-oxygen degradation and self-repairing silicon PV modules in the field
AU - Ciesla, Alison M.
AU - Bilbao, Jose I.
AU - Chan, Catherine E.
AU - Payne, David N. R.
AU - Chen, Daniel
AU - Kim, Moonyong
AU - Wenham, Stuart R.
AU - Hallam, Brett J.
N1 - Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2020/1
Y1 - 2020/1
N2 - Photovoltaic (PV) cells manufactured using p-type Czochralski wafers can degrade significantly in the field due to boron-oxygen (BO) defects. Commercial hydrogenation processes can now passivate such defects; however, this passivation can be destabilized under certain conditions. Module operating temperatures are rarely considered in defect studies, and yet are critical to understanding the degradation and passivation destabilization that may occur in the field. Here we show that the module operating temperatures are highly dependent on location and mounting, and the impact this has on BO defects in the field. The System Advisor Model is fed with typical meteorological year data from four locations around the world (Hamburg, Sydney, Tucson, and Wuhan) to predict module operating temperatures. We investigate three PV system mounting types: building integrated (BIPV), rack-mounted rooftop, and rack mounted on flat ground for a centralized system. BO defect reactions are then simulated, using a three-state model based on experimental values published in the literature and the predicted module operating temperatures. The simulation shows that the BIPV module in Tucson reaches 94 °C and stays above 50 °C for over 1600 h per year. These conditions could destabilize over one-third of passivated BO defects, resulting in a 0.4% absolute efficiency loss for the modules in this work. This absolute efficiency loss could be double for higher efficiency solar cell structures, and modules. On the other hand, passivation of BO defects can occur in the field if hydrogen is present and the module is under the right environmental conditions. It is therefore important to consider the specific installation location and type (or predicted operating temperatures) to determine the best way to treat BO defects. Modules that experience such extreme sustained conditions should be manufactured to ensure incorporation of hydrogen to enable passivation of BO defects in the field, thereby enabling a "self-repairing module".
AB - Photovoltaic (PV) cells manufactured using p-type Czochralski wafers can degrade significantly in the field due to boron-oxygen (BO) defects. Commercial hydrogenation processes can now passivate such defects; however, this passivation can be destabilized under certain conditions. Module operating temperatures are rarely considered in defect studies, and yet are critical to understanding the degradation and passivation destabilization that may occur in the field. Here we show that the module operating temperatures are highly dependent on location and mounting, and the impact this has on BO defects in the field. The System Advisor Model is fed with typical meteorological year data from four locations around the world (Hamburg, Sydney, Tucson, and Wuhan) to predict module operating temperatures. We investigate three PV system mounting types: building integrated (BIPV), rack-mounted rooftop, and rack mounted on flat ground for a centralized system. BO defect reactions are then simulated, using a three-state model based on experimental values published in the literature and the predicted module operating temperatures. The simulation shows that the BIPV module in Tucson reaches 94 °C and stays above 50 °C for over 1600 h per year. These conditions could destabilize over one-third of passivated BO defects, resulting in a 0.4% absolute efficiency loss for the modules in this work. This absolute efficiency loss could be double for higher efficiency solar cell structures, and modules. On the other hand, passivation of BO defects can occur in the field if hydrogen is present and the module is under the right environmental conditions. It is therefore important to consider the specific installation location and type (or predicted operating temperatures) to determine the best way to treat BO defects. Modules that experience such extreme sustained conditions should be manufactured to ensure incorporation of hydrogen to enable passivation of BO defects in the field, thereby enabling a "self-repairing module".
UR - http://www.scopus.com/inward/record.url?scp=85077209258&partnerID=8YFLogxK
U2 - 10.1109/JPHOTOV.2019.2945161
DO - 10.1109/JPHOTOV.2019.2945161
M3 - Article
AN - SCOPUS:85077209258
SN - 2156-3381
VL - 10
SP - 28
EP - 40
JO - IEEE Journal of Photovoltaics
JF - IEEE Journal of Photovoltaics
IS - 1
ER -