Abstract
Here we report on modeling kinetics of the boron-oxygen defect system in crystalline silicon solar cells. The model, as supported by experimental data, highlights the importance of defect formation for mitigating carrier-induced degradation. The inability to rapidly and effectively passivate boron-oxygen defects is primarily due to the unavailability of the defects for passivation, rather than any "weakness" of the passivation reaction. The theoretical long-term stability of modules in the field is investigated as a worst-case scenario using typical meteorological year data and the System Advisor Model (SAM). With effective mounting of the modules, the modelling indicates that even in desert locations, destabilisation of the passivation is no concern within 40 years. We also incorporate the quadratic dependence of the defect formation rate on the total hole concentration, and highlight the influence of changing doping densities or changing illumination intensity on the CID mitigation process.
Original language | English |
---|---|
Pages (from-to) | 42-51 |
Number of pages | 10 |
Journal | Energy Procedia |
Volume | 92 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Externally published | Yes |
Event | 6th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2016 - Chambery, France Duration: 7 Mar 2016 → 9 Mar 2016 |
Bibliographical note
Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- boron-oxygen
- carrier-induced degradation
- hydrogen passivation
- light-induced degradation
- regeneration