Abstract
Recent outbreaks of Ebola and Dengue viruses have again elevated the significance of the capability to quickly predict disease spread in an emergent situation. However, existing approaches usually rely heavily on the time-consuming census processes, or the privacy-sensitive call logs, leading to their unresponsive nature when facing the abruptly changing dynamics in the event of an outbreak. In this paper we study the feasibility of using large-scale Twitter data as a proxy of human mobility to model and predict disease spread. We report that for Australia, Twitter users' distribution correlates well the census-based population distribution, and that the Twitter users' travel patterns appear to loosely follow the gravity law at multiple scales of geographic distances, i.e. national level, state level and metropolitan level. The radiation model is also evaluated on this dataset though it has shown inferior fitness as a result of Australia's sparse population and large landmass. The outcomes of the study form the cornerstones for future work towards a model-based, responsive prediction method from Twitter data for disease spread.
Original language | English |
---|---|
Title of host publication | ICDEW 2015 |
Subtitle of host publication | Proceedings of the IEEE 31st International Conference on Data Engineering Workshops |
Place of Publication | Piscataway, NJ |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 83-86 |
Number of pages | 4 |
ISBN (Electronic) | 9781479984428 |
ISBN (Print) | 9781479984435 |
DOIs | |
Publication status | Published - 19 Jun 2015 |
Externally published | Yes |
Event | 2015 31st IEEE International Conference on Data Engineering Workshops, ICDEW 2015 - Seoul, Korea, Republic of Duration: 13 Apr 2015 → 17 Apr 2015 |
Other
Other | 2015 31st IEEE International Conference on Data Engineering Workshops, ICDEW 2015 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 13/04/15 → 17/04/15 |