TY - JOUR
T1 - Multi-site order-disorder kinetics in crystalline solids
T2 - A generalized formulation
AU - Sha, Lian Kun
AU - Chappell, Bruce W.
PY - 1997/3
Y1 - 1997/3
N2 - Many crystalline solids have multiple nonequivalent sites among which different atoms show substitutional long-range order-disorder phenomena. The order-disorder kinetics of an atom among any n nonequivalent sites in a crystal can be described by the equation xi = ci1 + Σn
j=2 cij(t)eλit where xi is the site occupancy of the atom at site si, n is the number of nonequivalent sites, λj (λ1 = 0) is constant at a given temperature, pressure, and total composition of the crystal, and cij(t) is constant or polynomial in t. Four theorems governing a multi-site order-disorder process have been proved, requiring that λj must be either zero (only λ1 = 0), a negative real number, or a complex-valued quantity with the real part being a nonpositive number. The kinetic model becomes constrained and naturally complies with crystal-chemical conditions when the mole number per formula unit is chosen as the unit of all site-occupancy variables, or site multiplicities are explicitly incorporated into the model. When the mole fraction is directly used as the unit, the model becomes unconstrained, but it is a valid treatment that is as equally applicable to the multi-site order-disorder kinetics as the constrained model.
AB - Many crystalline solids have multiple nonequivalent sites among which different atoms show substitutional long-range order-disorder phenomena. The order-disorder kinetics of an atom among any n nonequivalent sites in a crystal can be described by the equation xi = ci1 + Σn
j=2 cij(t)eλit where xi is the site occupancy of the atom at site si, n is the number of nonequivalent sites, λj (λ1 = 0) is constant at a given temperature, pressure, and total composition of the crystal, and cij(t) is constant or polynomial in t. Four theorems governing a multi-site order-disorder process have been proved, requiring that λj must be either zero (only λ1 = 0), a negative real number, or a complex-valued quantity with the real part being a nonpositive number. The kinetic model becomes constrained and naturally complies with crystal-chemical conditions when the mole number per formula unit is chosen as the unit of all site-occupancy variables, or site multiplicities are explicitly incorporated into the model. When the mole fraction is directly used as the unit, the model becomes unconstrained, but it is a valid treatment that is as equally applicable to the multi-site order-disorder kinetics as the constrained model.
UR - http://www.scopus.com/inward/record.url?scp=0030726623&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0030726623
SN - 0003-004X
VL - 82
SP - 325
EP - 336
JO - American Mineralogist
JF - American Mineralogist
IS - 3-4
ER -