Multimode and long-lived quantum correlations between photons and spins in a crystal

Cyril Laplane, Pierre Jobez, Jean Etesse, Nicolas Gisin, Mikael Afzelius

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)

Abstract

The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on the entanglement of remote matter systems, which in turn requires the creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a 151Eu3+-doped Y2SiO5 crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy-Schwarz inequality. Our results show that solid-state rare-earth-ion-doped crystals could be used to generate remote multimode entanglement, an important resource for future quantum networks.

Original languageEnglish
Article number210501
Number of pages5
JournalPhysical Review Letters
Volume118
Issue number21
DOIs
Publication statusPublished - 24 May 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Multimode and long-lived quantum correlations between photons and spins in a crystal'. Together they form a unique fingerprint.

Cite this