TY - JOUR
T1 - Multiple ECG Fiducial points based random binary sequence generation for securing wireless body area networks
AU - Zheng, Guanglou
AU - Fang, Gengfa
AU - Shankaran, Rajan
AU - Orgun, Mehmet A.
AU - Zhou, Jie
AU - Qiao, Li
AU - Saleem, Kashif
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.
AB - Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.
KW - electrocardiogram
KW - random binary sequence (BS)
KW - wavelet transforms (WT)
KW - wireless body area network
UR - http://www.scopus.com/inward/record.url?scp=85019183866&partnerID=8YFLogxK
U2 - 10.1109/JBHI.2016.2546300
DO - 10.1109/JBHI.2016.2546300
M3 - Article
C2 - 27046882
AN - SCOPUS:85019183866
SN - 2168-2194
VL - 21
SP - 655
EP - 663
JO - IEEE Journal of Biomedical and Health Informatics
JF - IEEE Journal of Biomedical and Health Informatics
IS - 3
M1 - 7440781
ER -