TY - JOUR
T1 - Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury
AU - Duong, Thi Thuy Hong
AU - Witting, Paul Kenneth
AU - Antao, Shane Tony
AU - Parry, Sarah Nicole
AU - Kennerson, Marina
AU - Lai, Barry
AU - Vogt, Stefan
AU - Lay, Peter Andrew
AU - Harris, Hugh Hamlyn
PY - 2009/3
Y1 - 2009/3
N2 - Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca2+, and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a ∼4 to 5-fold increase in cell death (maximum ∼25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of β-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca2+ contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the β-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca2+ influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
AB - Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca2+, and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a ∼4 to 5-fold increase in cell death (maximum ∼25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of β-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca2+ contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the β-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca2+ influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
KW - antioxidant
KW - apoptosis
KW - neuro-protection
KW - neuroglobin
KW - oxidative stress
KW - synchrotron radiation
KW - x-ray fluorescence imaging
UR - http://www.scopus.com/inward/record.url?scp=59449107434&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2008.05846.x
DO - 10.1111/j.1471-4159.2008.05846.x
M3 - Article
C2 - 19154338
AN - SCOPUS:59449107434
SN - 0022-3042
VL - 108
SP - 1143
EP - 1154
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 5
ER -