Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning

Dongnan Liu*, Mariano Cabezas, Dongang Wang, Zihao Tang, Lei Bai, Geng Zhan, Yuling Luo, Kain Kyle, Linda Ly, James Yu, Chun-Chien Shieh, Aria Nguyen, Ettikan Kandasamy Karuppiah, Ryan Sullivan, Fernando Calamante, Michael Barnett, Wanli Ouyang, Weidong Cai, Chenyu Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
12 Downloads (Pure)

Abstract

Background and introduction: Federated learning (FL) has been widely employed for medical image analysis to facilitate multi-client collaborative learning without sharing raw data. Despite great success, FL's applications remain suboptimal in neuroimage analysis tasks such as lesion segmentation in multiple sclerosis (MS), due to variance in lesion characteristics imparted by different scanners and acquisition parameters. Methods: In this work, we propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms. Specifically, a learnable weight is assigned to each local node during the aggregation process, based on its segmentation performance. In addition, the segmentation loss function in each client is also re-weighted according to the lesion volume for the data during training. Results: The proposed method has been validated on two FL MS segmentation scenarios using public and clinical datasets. Specifically, the case-wise and voxel-wise Dice score of the proposed method under the first public dataset is 65.20 and 74.30, respectively. On the second in-house dataset, the case-wise and voxel-wise Dice score is 53.66, and 62.31, respectively. Discussions and conclusions: The Comparison experiments on two FL MS segmentation scenarios using public and clinical datasets have demonstrated the effectiveness of the proposed method by significantly outperforming other FL methods. Furthermore, the segmentation performance of FL incorporating our proposed aggregation mechanism can achieve comparable performance to that from centralized training with all the raw data.

Original languageEnglish
Article number1167612
Pages (from-to)1-13
Number of pages13
JournalFrontiers in Neuroscience
Volume17
DOIs
Publication statusPublished - 2023
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2023. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • deep learning
  • federated learning
  • MRI
  • multiple sclerosis
  • segmentation

Fingerprint

Dive into the research topics of 'Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning'. Together they form a unique fingerprint.

Cite this