Abstract
Peripheral artery disease (PAD) is caused by narrowing of arteries in the limbs, normally occurring in the lower extremities, with severe cases resulting in amputation of the foot or leg. A potential approach for treatment is to stimulate the formation of new blood vessels to restore blood flow to limb tissues. This is a process called angiogenesis and involves the proliferation, migration, and differentiation of endothelial cells. Angiogenesis can be stimulated by reactive oxygen species (ROS), with NADPH oxidases (NOX) being a major source of ROS in endothelial cells. This review summarizes the recent evidence implicating NOX isoforms in their ability to regulate angiogenesis in vascular endothelial cells in vitro, and in PAD in vivo. Increasing our understanding of the involvement of the NOX isoforms in promoting therapeutic angiogenesis may lead to new treatment options to slow or reverse PAD.
Original language | English |
---|---|
Article number | 56 |
Pages (from-to) | 1-14 |
Number of pages | 14 |
Journal | Antioxidants |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - 12 Jul 2017 |
Externally published | Yes |
Bibliographical note
Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- angiogenesis
- peripheral artery disease (PAD)
- NADPH oxidases (NOX)
- endothelial cell (EC)