Abstract
A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A-I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodent apoA-I genes, it was discovered that the naked mole-rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA-I with cysteine at residues 173 (apoA-I Milano) or at 151 (apoA-I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA-I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA-I has been found with a cysteine in its sequence. In addition, the encoded naked mole-rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole-rat apoA-I having an unexpected neutral pI value, whereas other mammalian apoA-I have negative pI values. To verify these sequence differences and to determine if the N-terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA-I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.
Original language | English |
---|---|
Pages (from-to) | 269-278 |
Number of pages | 10 |
Journal | Lipids |
Volume | 56 |
Issue number | 3 |
Early online date | 17 Dec 2020 |
DOIs | |
Publication status | Published - May 2021 |
Externally published | Yes |
Keywords
- apoA-I
- apoE
- Homodimer
- hypoHDL
- Mass spectrometry
- Rodentia