Neural-network compensation methods for capacitive micromachined accelerometers for use in telecare medicine

Elena Gaura, R. J. Rider, N Steele, Raouf N. G. Naguib

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Transducers represent a key component of medical instrumentation systems. In this paper, sensors that perform the task of measuring the physical quantity of acceleration are discussed. These sensors are of special significance since, by integrating their output signal, accelerometers can additionally provide a measure of velocity and position. Applications for such measurements and, thus, of accelerometers, range from early diagnosis procedures for tremor-related diseases (e.g., Parkinson's) to monitoring daily patterns of patient activity using telemetry systems. The system-level requirements in such applications are considered and two novel neural-network transducer designs developed by the authors are presented, which aim to satisfy such requirements. Both designs are based on a micromachined sensing element with capacitive signal pickoff. The first is an open-loop design utilizing a direct-inverse-control strategy, while the second is a closed-loop design, where electrostatic actuation is used as a form of feedback. Both transducers are nonlinearly compensated, capable of self-test, and provide digital outputs.

Original languageEnglish
Article number945296
Pages (from-to)248-252
Number of pages5
JournalIEEE Transactions on Information Technology in Biomedicine
Volume5
Issue number3
DOIs
Publication statusPublished - Sep 2001
Externally publishedYes

Keywords

  • accelerometer
  • neural network
  • smart transducer
  • telemedicine
  • telemetry
  • TRIAXIAL ACCELEROMETER
  • SYSTEMS
  • FUTURE
  • TREMOR

Cite this