Abstract
Ciguatoxin (CTX), is a toxic compound produced by microalgae (dinoflagellate) Gambierdiscus spp., and is bio-accumulated and bio-transformed through the marine food chain causing neurological deficits. To determine the mechanism of CTX-mediated cytotoxicity in human neurons, we measured extracellular lactate dehydrogenase (LDH) activity, intracellular levels of nicotinamide adenine dinucleotide (NAD+) and H2AX phosphorylation at serine 139 as a measure for DNA damage in primary cultures of human neurons treated with Pacific (P)-CTX-1B and P-CTX-3C. We found these marine toxins can induce a time and dose-dependent increase in extracellular LDH activity, with a concomitant decline in intracellular NAD+ levels and increased DNA damage at the concentration range of 5-200 nM. We also showed that pre- and post-treatment with rosmarinic acid (RA), the active constituent of the Heliotropium foertherianum (Boraginaceae) can attenuate CTX-mediated neurotoxicity. These results further highlight the potential of RA in the treatment of CTX-induced neurological deficits.
Original language | English |
---|---|
Pages (from-to) | 226-234 |
Number of pages | 9 |
Journal | Neurotoxicity Research |
Volume | 25 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2014 |
Keywords
- Ciguatera
- Ciguatoxin
- DNA damage
- Neurotoxicity
- Rosmarinic acid