TY - JOUR
T1 - New insights into the breathing physiology from transient respiratory nasal simulation
AU - Bradshaw, Kimberley
AU - Warfield-Mcalpine, Patrick
AU - Vahaji, Sara
AU - Emmerling, Jake
AU - Salati, Hana
AU - Sacks, Ray
AU - Fletcher, David F.
AU - Singh, Narinder
AU - Inthavong, Kiao
PY - 2022/11/1
Y1 - 2022/11/1
N2 - The flow characteristics and heat transfer during nasal breathing in the complete human upper airway were investigated through the respiratory cycle using transient numerical simulations. We postulate that the complete airway from the nasal cavity to the trachea most accurately represents dynamic airflow patterns during inhalation and exhalation as they are likely to be affected by downstream anatomical structures. A 3D model was constructed from a healthy adult computed tomography scan. Computational fluid dynamics simulations were performed with Ansys Fluent software [ANSYS Fluent, R1 User's Guide (ANSYS, Inc., 2020)] using the stress-blended eddy simulation turbulence model looking at airflow patterns, velocity, mucosal temperature, and humidity (H2O fraction). One and a half breathing cycles were simulated for a total of 5.65 s, where the first inhalation cycle was discarded to avoid start-up effects. The results demonstrated that airway geometry structures, including the turbinates, the soft palate, and the glottic region, affect the flow patterns differently during inspiration and expiration. It also demonstrated phenomena not seen in steady flow simulations or in those without the lower respiratory tract geometry, including the nasopharyngeal temperature imprint during inhalation, the nasopharyngeal jet during exhalation, and the flow structures of the larynx and laryngeal jet. The inclusion of the exhalation phase demonstrates airflow preconditioning before inhalation, which we postulate contributes to achieving alveolar conditions. Alveolar temperature and humidity conditions are not achieved by the nasal cavity alone, and we demonstrate the contribution of the nasopharynx and larynx to air conditioning. Including the complete airway with realistic anatomy and using transient airflow modeling provided new insights into the physiology of the respiratory cycle.
AB - The flow characteristics and heat transfer during nasal breathing in the complete human upper airway were investigated through the respiratory cycle using transient numerical simulations. We postulate that the complete airway from the nasal cavity to the trachea most accurately represents dynamic airflow patterns during inhalation and exhalation as they are likely to be affected by downstream anatomical structures. A 3D model was constructed from a healthy adult computed tomography scan. Computational fluid dynamics simulations were performed with Ansys Fluent software [ANSYS Fluent, R1 User's Guide (ANSYS, Inc., 2020)] using the stress-blended eddy simulation turbulence model looking at airflow patterns, velocity, mucosal temperature, and humidity (H2O fraction). One and a half breathing cycles were simulated for a total of 5.65 s, where the first inhalation cycle was discarded to avoid start-up effects. The results demonstrated that airway geometry structures, including the turbinates, the soft palate, and the glottic region, affect the flow patterns differently during inspiration and expiration. It also demonstrated phenomena not seen in steady flow simulations or in those without the lower respiratory tract geometry, including the nasopharyngeal temperature imprint during inhalation, the nasopharyngeal jet during exhalation, and the flow structures of the larynx and laryngeal jet. The inclusion of the exhalation phase demonstrates airflow preconditioning before inhalation, which we postulate contributes to achieving alveolar conditions. Alveolar temperature and humidity conditions are not achieved by the nasal cavity alone, and we demonstrate the contribution of the nasopharynx and larynx to air conditioning. Including the complete airway with realistic anatomy and using transient airflow modeling provided new insights into the physiology of the respiratory cycle.
UR - http://www.scopus.com/inward/record.url?scp=85143314562&partnerID=8YFLogxK
U2 - 10.1063/5.0112223
DO - 10.1063/5.0112223
M3 - Article
AN - SCOPUS:85143314562
SN - 1070-6631
VL - 34
SP - 1
EP - 14
JO - Physics of Fluids
JF - Physics of Fluids
IS - 11
M1 - 115103
ER -