New sea ice estimates over the last 49ky in the southeast Indian Ocean sector of the Southern Ocean

Leanne Armand, Patrick Quilty, William Howard, Lloyd Burckle, Aldo Shemesh, Xavier Crosta, Giuseppe Cortese, David Fink, Alexander Ferry

Research output: Contribution to conferenceAbstract

Abstract

Although many Quaternary records have allowed the study of major glacial-interglacial change in the Southern Ocean, Holocene records from deep-sea cores are few and far between and are currently limited to the South Atlantic. Low sedimentation rates combined with deep seafloors, and the high-nutrient, low-chlorophyll nature of the Southern Ocean are all in part responsible for the lack of decadal-to-centennial resolution records in the open-ocean environment. Our study is focused on an array of sedimentological, micropalaeontological and geochemical analyses conducted on the first open-ocean, high-resolution core study of Quaternary-Holocene sea-ice variability in the Southeast Indian Ocean; Eltanin piston core 27-23. In this presentation the results of sea ice estimates derived from diatom remains and tied to other physical and geological proxies will reveal the change from a sea-ice covered glacial maximum and deglacial transition through to the modern day. We report evidence of several Holocene ice edge advance episodes out to 59 S, inclusive of the Antarctic Climatic Reversal. The addition of this record to existing, lower-resolution, sea-ice histories from regional cores MD88-787 and SO136-111 and in context to modern oceanographic fronts enables scenarios of regional palaeoceanographic change to be refined.
Original languageEnglish
Pages2978
Number of pages1
Publication statusPublished - 2012
EventInternational Geological Congress (34th : 2012) - Brisbane, Australia
Duration: 5 Aug 201210 Aug 2012

Conference

ConferenceInternational Geological Congress (34th : 2012)
CountryAustralia
CityBrisbane
Period5/08/1210/08/12

Fingerprint Dive into the research topics of 'New sea ice estimates over the last 49ky in the southeast Indian Ocean sector of the Southern Ocean'. Together they form a unique fingerprint.

Cite this