Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Insects typically host substantial microbial communities (the 'microbiome') that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit fly') that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect's microbiome and that of the surrounding host tissues.

LanguageEnglish
Article number14292
Pages1-12
Number of pages12
JournalScientific Reports
Volume9
DOIs
Publication statusPublished - 1 Oct 2019

Fingerprint

Tephritidae
Microbiota
Fruit
Larva
Food
Insects
Manilkara
Punicaceae
Rosaceae
Diet
Bacterial Structures
Geographic Locations
South Australia
Malus
Diptera
Ovum

Bibliographical note

Copyright the Author(s) 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Cite this

@article{cc9ae8d3ac614c38b774573ec0685726,
title = "Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly",
abstract = "Insects typically host substantial microbial communities (the 'microbiome') that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit fly') that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect's microbiome and that of the surrounding host tissues.",
author = "Rajib Majumder and Brodie Sutcliffe and Taylor, {Phillip W.} and Chapman, {Toni A.}",
note = "Copyright the Author(s) 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.",
year = "2019",
month = "10",
day = "1",
doi = "10.1038/s41598-019-50602-5",
language = "English",
volume = "9",
pages = "1--12",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Springer, Springer Nature",

}

Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. / Majumder, Rajib; Sutcliffe, Brodie; Taylor, Phillip W.; Chapman, Toni A.

In: Scientific Reports, Vol. 9, 14292, 01.10.2019, p. 1-12.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly

AU - Majumder, Rajib

AU - Sutcliffe, Brodie

AU - Taylor, Phillip W.

AU - Chapman, Toni A.

N1 - Copyright the Author(s) 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

PY - 2019/10/1

Y1 - 2019/10/1

N2 - Insects typically host substantial microbial communities (the 'microbiome') that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit fly') that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect's microbiome and that of the surrounding host tissues.

AB - Insects typically host substantial microbial communities (the 'microbiome') that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit fly') that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect's microbiome and that of the surrounding host tissues.

UR - http://www.scopus.com/inward/record.url?scp=85072848062&partnerID=8YFLogxK

U2 - 10.1038/s41598-019-50602-5

DO - 10.1038/s41598-019-50602-5

M3 - Article

VL - 9

SP - 1

EP - 12

JO - Scientific Reports

T2 - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 14292

ER -