Nitric oxide regulates local arterial distensibility in vivo

Ian B. Wilkinson*, Ahmed Qasem, Carmel M. McEniery, David J. Webb, Albert P. Avolio, John R. Cockcroft

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

425 Citations (Scopus)


Background - Arterial stiffness is an important determinant of cardiovascular risk. Several lines of evidence support a role for the endothelium in regulating arterial stiffness by release of vasoactive mediators. We hypothesized that nitric oxide (NO) acting locally regulates arterial stiffness in vivo, and the aim of this experiment was to test this hypothesis in an ovine hind-limb preparation. Methods and Results - All studies were conducted in anesthetized sheep. Pulse wave velocity (PWV) was calculated by the foot-to-foot methodology from 2 pressure waveforms recorded simultaneously with a high-fidelity dual pressure-sensing catheter placed in the common iliac artery. Intra-arterial infusion of NG-monomethyl-L-arginine (L-NMMA) increased iliac PWV significantly, by 3±2% (P<0.01). Infusion of acetylcholine and glyceryl trinitrate reduced PWV significantly, by 6±4% (P=0.03) and 5±2% (P<0.01), respectively. Only the effect of acetylcholine, however, was significantly inhibited during coinfusion of L-NMMA (P=0.03). There was no change in systemic arterial pressure throughout the studies. Importantly, infusion of L-NMMA or acetylcholine distal to the common iliac artery (via the sheath) did not affect PWV. Conclusions - These results demonstrate, for the first time, that basal NO production influences large-artery distensibility. In addition, exogenous acetylcholine and glyceryl trinitrate both increase arterial distensibility, the former mainly through NO production. This may help explain why conditions that exhibit endothelial dysfunction are also associated with increased arterial stiffness. Therefore, reversal of endothelial dysfunction or drugs that are large-artery vasorelaxants may be effective in reducing large-artery stiffness in humans, and thus cardiovascular risk.

Original languageEnglish
Pages (from-to)213-217
Number of pages5
Issue number2
Publication statusPublished - 15 Jan 2002
Externally publishedYes


Dive into the research topics of 'Nitric oxide regulates local arterial distensibility in vivo'. Together they form a unique fingerprint.

Cite this