Non-thermal X-ray emission from the northwestern rim of the Galactic supernova remnant G266.2-1.2 (RX J0852.0-4622)

Thomas G. Pannuti, Glenn E. Allen, Miroslav D. Filipovic, Ain De Horta, Milorad Stupar, Rashika Agrawal

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)


    We present a detailed spatially resolved spectroscopic analysis of two observations (with a total integration time of 73280 s) made of the X-ray-luminous northwestern rim complex of the Galactic supernova remnant (SNR) G266.2-1.2 (RX J0852.0-4622) with the Chandra X-ray Observatory. G266.2-1.2 is a member of a class of Galactic SNRs which feature X-ray spectra dominated by non-thermal emission: in the cases of these SNRs, the emission is believed to have a synchrotron origin and studies of the X-ray spectra of these SNRs can lend insight into how SNRs accelerate cosmic-ray particles. The Chandra observations have clearly revealed fine structure in this rim complex (including a remarkably well-defined leading shock) and the spectra of these features are dominated by non-thermal emission. We have measured the length scales of the upstream structures at eight positions along the rim and derive lengths of 0.02-0.08 pc (assuming a distance of 750 pc to G266.2-1.2). We have also extracted spectra from seven regions in the rim complex (as sampled by the ACIS-S2, -S3, and -S4 chips) and fit these spectra with such models as a simple power law as well as the synchrotron models SRCUT and SRESC. We have constrained our fits to the latter two models using estimates for the flux densities of these filaments at 1 GHz as determined from radio observations of this rim complex made with the Australia Telescope Compact Array. Statistically acceptable fits to all seven regions are derived using each model: differences in the fit parameters (such as photon index and cutoff frequency) are seen in different regions, which may indicate variations in shock conditions and the maximum energies of the cosmic-ray electrons accelerated at each region. Finally, we estimate the maximum energy of cosmic-ray electrons accelerated along this rim complex to be approximately 40 TeV (corresponding to one of the regions of the leading shock structure assuming a magnetic field strength of 10μG). We include a summary of estimated maximum energies for both Galactic SNRs as well as SNRs located in the Large Magellanic Cloud. Like these other SNRs, it does not appear that G266.2-1.2 is currently accelerating electrons to he knee energy (~3000 TeV) of the cosmic-ray spectrum. This result is not surprising, as there is some evidence that loss mechanisms which are not important for the accelerated cosmic-ray nucleons at energies just below the knee might cut off electron acceleration.
    Original languageEnglish
    Pages (from-to)1492-1508
    Number of pages17
    JournalThe Astrophysical Journal: an international review of astronomy and astronomical physics
    Issue number2
    Publication statusPublished - 2010


    • Acceleration of particles - cosmic rays - ISM
    • Individual (G266.2-1.2)
    • Supernova remnants - X-rays


    Dive into the research topics of 'Non-thermal X-ray emission from the northwestern rim of the Galactic supernova remnant G266.2-1.2 (RX J0852.0-4622)'. Together they form a unique fingerprint.

    Cite this