Novel applications using latent variable models

Research output: ThesisDoctoral Thesis


Latent variable models have achieved a great success in many research communities, including machine learning, information retrieval, data mining, natural language processing, etc. Latent variable models use an assumption that the data, which is observable, has an affinity to some hidden/latent variables. In this thesis, we present a suite of novel applications using latent variable models. In particular, we (i) extend topic models using directional distributions, (ii) propose novel solutions using latent variable models to detect outliers (anomalies) and (iii) to answer cross-modal retrieval problem.

We present a study of directional distributions in modeling data. Specifically, we implement the von Mises-Fisher (vMF) distribution and develop latent variable models which are based on directed graphical models. The directed graphical models are commonly used to represent the conditional dependency among the variables. Under Bayesian treatment, we propose approximate posterior inference algorithms using variational methods for the models. We show that by incorporating the vMF distribution, the quality of clustering is improved rather than by using word count-based topic models. Furthermore, with the properties of directional distributions in hand, we extend the applications to detect outliers in various data sets and settings.

Finally, we present latent variable models that are based on supervised learning to answer the cross-modal retrieval problem. In the cross-modal retrieval problem, the objective is to find matching content across different modalities such as text and image. We explore various approaches such as by using one-class learning methods, generating negative instances and using ranking methods. We show that our models outperform generic approaches such as Canonical Correlation Analysis (CCA) and its variants.
Original languageEnglish
Publication statusUnpublished - 31 Mar 2015
Externally publishedYes


  • latent variable model
  • von Mises-Fisher distribution
  • outlier detection
  • cross-modal retrieval


Dive into the research topics of 'Novel applications using latent variable models'. Together they form a unique fingerprint.

Cite this