TY - JOUR
T1 - Novel ThickNet features for the discrimination of amnestic MCI subtypes
AU - Raamana, Pradeep Reddy
AU - Wen, Wei
AU - Kochan, Nicole A.
AU - Brodaty, Henry
AU - Sachdev, Perminder S.
AU - Wang, Lei
AU - Beg, Mirza Faisal
PY - 2014
Y1 - 2014
N2 - Background Amnestic mild cognitive impairment (aMCI) is considered to be a transitional stage between healthy aging and Alzheimer's disease (AD), and consists of two subtypes: single-domain aMCI (sd-aMCI) and multi-domain aMCI (md-aMCI). Individuals with md-aMCI are found to exhibit higher risk of conversion to AD. Accurate discrimination among aMCI subtypes (sd- or md-aMCI) and controls could assist in predicting future decline. Methods We apply our novel thickness network (ThickNet) features to discriminate md-aMCI from healthy controls (NC). ThickNet features are extracted from the properties of a graph constructed from inter-regional co-variation of cortical thickness. We fuse these ThickNet features using multiple kernel learning to form a composite classifier. We apply the proposed ThickNet classifier to discriminate between md-aMCI and NC, sd-aMCI and NC and; and also between sd-aMCI and md-aMCI, using baseline T1 MR scans from the Sydney Memory and Ageing Study. Results ThickNet classifier achieved an area under curve (AUC) of 0.74, with 70% sensitivity and 69% specificity in discriminating md-aMCI from healthy controls. The same classifier resulted in AUC = 0.67 and 0.67 for sd-aMCI/NC and sd-aMCI/md-aMCI classification experiments respectively. Conclusions The proposed ThickNet classifier demonstrated potential for discriminating md-aMCI from controls, and in discriminating sd-aMCI from md-aMCI, using cortical features from baseline MRI scan alone. Use of the proposed novel ThickNet features demonstrates significant improvements over previous experiments using cortical thickness alone. This result may offer the possibility of early detection of Alzheimer's disease via improved discrimination of aMCI subtypes.
AB - Background Amnestic mild cognitive impairment (aMCI) is considered to be a transitional stage between healthy aging and Alzheimer's disease (AD), and consists of two subtypes: single-domain aMCI (sd-aMCI) and multi-domain aMCI (md-aMCI). Individuals with md-aMCI are found to exhibit higher risk of conversion to AD. Accurate discrimination among aMCI subtypes (sd- or md-aMCI) and controls could assist in predicting future decline. Methods We apply our novel thickness network (ThickNet) features to discriminate md-aMCI from healthy controls (NC). ThickNet features are extracted from the properties of a graph constructed from inter-regional co-variation of cortical thickness. We fuse these ThickNet features using multiple kernel learning to form a composite classifier. We apply the proposed ThickNet classifier to discriminate between md-aMCI and NC, sd-aMCI and NC and; and also between sd-aMCI and md-aMCI, using baseline T1 MR scans from the Sydney Memory and Ageing Study. Results ThickNet classifier achieved an area under curve (AUC) of 0.74, with 70% sensitivity and 69% specificity in discriminating md-aMCI from healthy controls. The same classifier resulted in AUC = 0.67 and 0.67 for sd-aMCI/NC and sd-aMCI/md-aMCI classification experiments respectively. Conclusions The proposed ThickNet classifier demonstrated potential for discriminating md-aMCI from controls, and in discriminating sd-aMCI from md-aMCI, using cortical features from baseline MRI scan alone. Use of the proposed novel ThickNet features demonstrates significant improvements over previous experiments using cortical thickness alone. This result may offer the possibility of early detection of Alzheimer's disease via improved discrimination of aMCI subtypes.
KW - Alzheimer
KW - Cortical thickness
KW - Early detection
KW - Mild cognitive impairment
KW - Network
KW - ThickNet
UR - http://www.scopus.com/inward/record.url?scp=84907728605&partnerID=8YFLogxK
U2 - 10.1016/j.nicl.2014.09.005
DO - 10.1016/j.nicl.2014.09.005
M3 - Article
C2 - 25379441
AN - SCOPUS:84907728605
SN - 2213-1582
VL - 6
SP - 284
EP - 295
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
ER -