TY - JOUR
T1 - Numerical Modeling and Optimization of Diode Pumped Heavily-Erbium-Doped Fluoride Fiber Lasers
AU - Li, Jianfeng
AU - Li, Jianfeng
AU - Jackson, Stuart D.
PY - 2012/4/12
Y1 - 2012/4/12
N2 - Numerical modeling of heavily-erbium-doped fluoride fiber lasers is presented. Calculations from the model were compared with all previously reported experimental demonstrations of heavily-erbium-doped fluoride fiber lasers. Commensurate with recent modeling studies, good agreement with the measurements was achieved with the use of scaled-down rate parameters for energy transfer that corresponds to weaker interactions between Er3+ ions. For wavelength-fixed (grating) systems, we show that the measured saturation of the output power results from a combination of changes to the Boltzmann distribution arising from core temperature excursions and pump excited state absorption (ESA). In free-running systems, we show that inter-Stark level transitions that terminate on progressively higher Stark levels within the 4I13/2 manifold in part describe the non-saturating behavior of the output power at moderate pump levels. The model was used to investigate the influence of dopant concentration, pump wavelength, pump configuration, output coupling and background loss of the fiber on laser performance. In contrast to a number of previous modeling investigations, our results show that the slope efficiency steadily increases with increasing erbium concentration as a result of the reduced rates of energy recycling caused by the weakly interacting Er3+ ions. The highest slope efficiency was obtained for a pump wavelength of 983 nm due to reduced levels of ESA, however, for both free-running and wavelength-fixed arrangements of the laser, pump ESA may ultimately preclude significant power scaling.
AB - Numerical modeling of heavily-erbium-doped fluoride fiber lasers is presented. Calculations from the model were compared with all previously reported experimental demonstrations of heavily-erbium-doped fluoride fiber lasers. Commensurate with recent modeling studies, good agreement with the measurements was achieved with the use of scaled-down rate parameters for energy transfer that corresponds to weaker interactions between Er3+ ions. For wavelength-fixed (grating) systems, we show that the measured saturation of the output power results from a combination of changes to the Boltzmann distribution arising from core temperature excursions and pump excited state absorption (ESA). In free-running systems, we show that inter-Stark level transitions that terminate on progressively higher Stark levels within the 4I13/2 manifold in part describe the non-saturating behavior of the output power at moderate pump levels. The model was used to investigate the influence of dopant concentration, pump wavelength, pump configuration, output coupling and background loss of the fiber on laser performance. In contrast to a number of previous modeling investigations, our results show that the slope efficiency steadily increases with increasing erbium concentration as a result of the reduced rates of energy recycling caused by the weakly interacting Er3+ ions. The highest slope efficiency was obtained for a pump wavelength of 983 nm due to reduced levels of ESA, however, for both free-running and wavelength-fixed arrangements of the laser, pump ESA may ultimately preclude significant power scaling.
KW - Erbium lasers
KW - fiber lasers
KW - fluoride glass
UR - http://www.scopus.com/inward/record.url?scp=85008583292&partnerID=8YFLogxK
U2 - 10.1109/JQE.2012.2183856
DO - 10.1109/JQE.2012.2183856
M3 - Article
AN - SCOPUS:85008583292
SN - 0018-9197
VL - 48
SP - 454
EP - 464
JO - IEEE Journal of Quantum Electronics
JF - IEEE Journal of Quantum Electronics
IS - 4
ER -