TY - JOUR
T1 - Observations and three-dimensional photoionization modelling of the Wolf-Rayet planetary nebula Abell 48
AU - Danehkar, A.
AU - Todt, H.
AU - Ercolano, B.
AU - Kniazev, A. Y.
PY - 2014/4
Y1 - 2014/4
N2 - Recent observations reveal that the central star of the planetary nebula Abell 48 exhibits spectral features similar tomassive nitrogen-sequenceWolf-Rayet stars. This raises a pertinent question, whether it is still a planetary nebula or rather a ring nebula of a massive star. In this study, we have constructed a three-dimensional photoionization model of Abell 48, constrained by our new optical integral field spectroscopy. An analysis of the spatially resolved velocity distributions allowed us to constrain the geometry of Abell 48.We used the collisionally excited lines to obtain the nebular physical conditions and ionic abundances of nitrogen, oxygen, neon, sulphur and argon, relative to hydrogen. We also determined helium temperatures and ionic abundances of helium and carbon from the optical recombination lines. We obtained a good fit to the observations for most of the emission-line fluxes in our photoionization model. The ionic abundances deduced from our model are in decent agreement with those derived by the empirical analysis. However, we notice obvious discrepancies between helium temperatures derived from the model and the empirical analysis, as overestimated by our model. This could be due to the presence of a small fraction of coldmetal-rich structures,which were not included in our model. It is found that the observed nebular line fluxes were best reproduced by using a hydrogen-deficient expanding model atmosphere as the ionizing source with an effective temperature of Teff = 70 kK and a stellar luminosity of L* = 5500 L⊙, which corresponds to a relatively low-mass progenitor star (~3 M⊙) rather than a massive Pop I star.
AB - Recent observations reveal that the central star of the planetary nebula Abell 48 exhibits spectral features similar tomassive nitrogen-sequenceWolf-Rayet stars. This raises a pertinent question, whether it is still a planetary nebula or rather a ring nebula of a massive star. In this study, we have constructed a three-dimensional photoionization model of Abell 48, constrained by our new optical integral field spectroscopy. An analysis of the spatially resolved velocity distributions allowed us to constrain the geometry of Abell 48.We used the collisionally excited lines to obtain the nebular physical conditions and ionic abundances of nitrogen, oxygen, neon, sulphur and argon, relative to hydrogen. We also determined helium temperatures and ionic abundances of helium and carbon from the optical recombination lines. We obtained a good fit to the observations for most of the emission-line fluxes in our photoionization model. The ionic abundances deduced from our model are in decent agreement with those derived by the empirical analysis. However, we notice obvious discrepancies between helium temperatures derived from the model and the empirical analysis, as overestimated by our model. This could be due to the presence of a small fraction of coldmetal-rich structures,which were not included in our model. It is found that the observed nebular line fluxes were best reproduced by using a hydrogen-deficient expanding model atmosphere as the ionizing source with an effective temperature of Teff = 70 kK and a stellar luminosity of L* = 5500 L⊙, which corresponds to a relatively low-mass progenitor star (~3 M⊙) rather than a massive Pop I star.
KW - ISM: abundances
KW - Planetary nebulae: individual
KW - Abell 48
KW - Stars: Wolf-Rayet
KW - Planetary nebulae: individual: Abell 48
UR - http://www.scopus.com/inward/record.url?scp=84897061036&partnerID=8YFLogxK
U2 - 10.1093/mnras/stu203
DO - 10.1093/mnras/stu203
M3 - Article
VL - 439
SP - 3605
EP - 3615
JO - Monthly Notices of the Royal Astronomical Society: Letters
JF - Monthly Notices of the Royal Astronomical Society: Letters
SN - 1745-3925
IS - 4
ER -