Abstract
Telomerase represents an attractive target in oncology as it is expressed in cancer but not in normal tissues. The oligonucleotide inhibitors of telomerase represent a promising anticancer strategy, although poor cellular uptake can restrict their efficacy. In this study, gold nanoparticles (AuNPs) were used to enhance oligonucleotide uptake. "match" oligonucleotides complementary to the telomerase RNA template subunit (hTR) and "scramble" (control) oligonucleotides were conjugated to diethylenetriamine pentaacetate (DTPA) for 111In-labeling. AuNPs (15.5 nm) were decorated with a monofunctional layer of oligonucleotides (ON-AuNP) or a multifunctional layer of oligonucleotides, PEG(polethylene glycol)800-SH (to reduce AuNP aggregation) and the cell-penetrating peptide Tat (ON-AuNP-Tat). Match-AuNP enhanced the cellular uptake of radiolabeled oligonucleotides while retaining the ability to inhibit telomerase activity. The addition of Tat to AuNPs increased nuclear localization. 111In-Match-AuNP-Tat induced DNA double-strand breaks and caused a dose-dependent reduction in clonogenic survival of telomerase-positive cells but not telomerase-negative cells. hTR inhibition has been reported to sensitize cancer cells to ionizing radiation, and 111In-Match-AuNP-Tat therefore holds promise as a vector for delivery of radionuclides into cancer cells while simultaneously sensitizing them to the effects of the emitted radiation.
Original language | English |
---|---|
Pages (from-to) | 3820-3831 |
Number of pages | 12 |
Journal | Molecular Pharmaceutics |
Volume | 18 |
Issue number | 10 |
Early online date | 27 Aug 2021 |
DOIs | |
Publication status | Published - 4 Oct 2021 |
Externally published | Yes |
Bibliographical note
Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Auger electrons
- gold nanoparticles
- nanomedicine
- targeted radionuclide therapy
- telomerase