## Abstract

In this paper, we develop an option valuation model when the price dynamics of the underlying risky asset is governed by the exponential of a pure jump process specified by a shifted kernel-biased completely random measure. The class of kernel-biased completely random measures is a rich class of jump-type processes introduced in [James, L.F., 2005. Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33, 1771-1799; James, L.F., 2006. Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34, 416-440] and it provides a great deal of flexibility to incorporate both finite and infinite jump activities. It includes a general class of processes, namely, the generalized Gamma process, which in its turn includes the stable process, the Gamma process and the inverse Gaussian process as particular cases. The kernel-biased representation is a nice representation form and can describe different types of finite and infinite jump activities by choosing different mixing kernel functions. We employ a dynamic version of the Esscher transform, which resembles an exponential change of measures or a disintegration formula based on the Laplace functional used by James, to determine an equivalent martingale measure in the incomplete market. Closed-form option pricing formulae are obtained in some parametric cases, which provide practitioners with a convenient way to evaluate option prices.

Original language | English |
---|---|

Pages (from-to) | 99-107 |

Number of pages | 9 |

Journal | Insurance: Mathematics and Economics |

Volume | 43 |

Issue number | 1 |

DOIs | |

Publication status | Published - Aug 2008 |

Externally published | Yes |

## Keywords

- Esscher transform
- Generalized Gamma processes
- Kernel-biased completely random measures
- Laplace functionals
- Option pricing