TY - JOUR
T1 - On some generalisations of the Erdos distance problem over finite fields
AU - Shparlinski, Igor E.
PY - 2006/4
Y1 - 2006/4
N2 - We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets A, B ⊆ double-struck F sign⊆qn where double-struck F signq is a finite field of g elements and n ≥ 1 is an integer. Copyright Clearance Centre, Inc.
AB - We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets A, B ⊆ double-struck F sign⊆qn where double-struck F signq is a finite field of g elements and n ≥ 1 is an integer. Copyright Clearance Centre, Inc.
UR - http://www.scopus.com/inward/record.url?scp=33646435081&partnerID=8YFLogxK
U2 - 10.1017/S0004972700038867
DO - 10.1017/S0004972700038867
M3 - Article
AN - SCOPUS:33646435081
SN - 0004-9727
VL - 73
SP - 285
EP - 292
JO - Bulletin of the Australian Mathematical Society
JF - Bulletin of the Australian Mathematical Society
IS - 2
ER -