TY - JOUR

T1 - On some generalisations of the Erdos distance problem over finite fields

AU - Shparlinski, Igor E.

PY - 2006/4

Y1 - 2006/4

N2 - We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets A, B ⊆ double-struck F sign⊆qn where double-struck F signq is a finite field of g elements and n ≥ 1 is an integer. Copyright Clearance Centre, Inc.

AB - We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets A, B ⊆ double-struck F sign⊆qn where double-struck F signq is a finite field of g elements and n ≥ 1 is an integer. Copyright Clearance Centre, Inc.

UR - http://www.scopus.com/inward/record.url?scp=33646435081&partnerID=8YFLogxK

U2 - 10.1017/S0004972700038867

DO - 10.1017/S0004972700038867

M3 - Article

AN - SCOPUS:33646435081

VL - 73

SP - 285

EP - 292

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 2

ER -