On strong pseudoprimes in arithmetic progressions

A. J. Van Der Poorten, A. Rotkiewicz

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A composite integer N is said to be a strong pseudoprime for the base C if with N-1 = 2sd, (2,d) = 1 either Cd≡ 1, or C2’≡ 1 (modN) some r, 0 ≤r < s. It is shown that every arithmetic progression ax + b (x = 0,1,…) where a,b are relatively prime integers contains an infinite number of odd strong pseudoprimes for each base C ≥2.

Original languageEnglish
Pages (from-to)316-321
Number of pages6
JournalJournal of the Australian Mathematical Society
Volume29
Issue number3
DOIs
Publication statusPublished - 1980

Fingerprint Dive into the research topics of 'On strong pseudoprimes in arithmetic progressions'. Together they form a unique fingerprint.

  • Cite this