On the 2-categories of weak distributive laws

Gabriella Böhm*, Stephen Lack, Ross Street

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    A weak mixed distributive law (also called weak entwining structure [8]) in a 2-category consists of a monad and a comonad, together with a 2-cell relating them in a way which generalizes a mixed distributive law due to Beck. We show that a weak mixed distributive law can be described as a compatible pair of a monad and a comonad, in 2-categories extending, respectively, the 2-category of comonads and the 2-category of monads in [13]. Based on this observation, we define a 2-category whose 0-cells are weak mixed distributive laws. In a 2-category K which admits Eilenberg-Moore constructions both for monads and comonads, and in which idempotent 2-cells split, we construct a fully faithful 2-functor from this 2-category of weak mixed distributive laws to K 2×2.

    Original languageEnglish
    Pages (from-to)4567-4583
    Number of pages17
    JournalCommunications in Algebra
    Volume39
    Issue number12
    DOIs
    Publication statusPublished - Dec 2011

    Fingerprint

    Dive into the research topics of 'On the 2-categories of weak distributive laws'. Together they form a unique fingerprint.

    Cite this