On the pilot contamination attack in multi-cell multiuser massive MIMO networks

Noman Akbar, Shihao Yan*, Asad Masood Khattak, Nan Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


In this paper, we analyze pilot contamination (PC) attacks on a multi-cell massive multiple-input multiple-output (MIMO) network with correlated pilots. We obtain correlated pilots using a user capacity-achieving pilot sequence design. This design relies on an algorithm which designs correlated pilot sequences based on signal-to-interference-plus-noise ratio (SINR) requirements for all the legitimate users. The pilot design is capable of achieving the SINR requirements for all users even in the presence of PC. However, this design has some intrinsic limitations and vulnerabilities, such as a known pilot sequence and the non-zero cross-correlation among different pilot sequences. We reveal that such vulnerabilities may be exploited by an active attacker to increase PC in the network. Motivated by this, we analyze the correlated pilot design for vulnerabilities that can be exploited by an active attacker. Based on this analysis, we develop an effective active attack strategy in the massive MIMO network with correlated pilot sequences. Our examinations reveal that the user capacity region of the network is significantly reduced in the presence of the active attack. Importantly, the SINR requirements for the worst-affected users may not be satisfied even with an infinite number of antennas at the base station.

Original languageEnglish
Pages (from-to)2264-2276
Number of pages13
JournalIEEE Transactions on Communications
Issue number4
Publication statusPublished - Apr 2020


Dive into the research topics of 'On the pilot contamination attack in multi-cell multiuser massive MIMO networks'. Together they form a unique fingerprint.

Cite this