On the use of Computational Fluid Dynamics (CFD) modelling to design improved dry powder inhalers

David F. Fletcher, Vishal Chaugule, Larissa Gomes dos Reis, Paul M. Young, Daniela Traini, Julio Soria

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose Computational Fluid Dynamics (CFD) simulations are performed to investigate the impact of adding a grid to a two-inlet dry powder inhaler (DPI). The purpose of the paper is to show the importance of the correct choice of closure model and modeling approach, as well as to perform validation against particle dispersion data obtained from in-vitro studies and flow velocity data obtained from particle image velocimetry (PIV) experiments.

Methods CFD simulations are performed using the Ansys Fluent 2020R1 software package. Two RANS turbulence models (realisable k − ε and k − ω SST) and the Stress Blended Eddy Simulation (SBES) models are considered. Lagrangian particle tracking for both carrier and fine particles is also performed.

Results Excellent comparison with the PIV data is found for the SBES approach and the particle tracking data are consistent with the dispersion results, given the simplicity of the assumptions made.

Conclusions This work shows the importance of selecting the correct turbulence modelling approach and boundary conditions to obtain good agreement with PIV data for the flow-field exiting the device. With this validated, the model can be used with much higher confidence to explore the fluid and particle dynamics within the device.
Original languageEnglish
Pages (from-to)277-288
Number of pages12
JournalPharmaceutical Research
Volume38
Issue number2
DOIs
Publication statusPublished - 11 Feb 2021
Externally publishedYes

Keywords

  • CFD
  • dry powder inhaler
  • SBES
  • particle tracking
  • turbulence models

Fingerprint

Dive into the research topics of 'On the use of Computational Fluid Dynamics (CFD) modelling to design improved dry powder inhalers'. Together they form a unique fingerprint.

Cite this