Projects per year
Abstract
We derive a universal nonperturbative bound on the distance between unitary evolutions generated by time-dependent Hamiltonians in terms of the difference of their integral actions. We apply our result to provide explicit error bounds for the rotating-wave approximation and generalize it beyond the qubit case. We discuss the error of the rotating-wave approximation over long time and in the presence of time-dependent amplitude modulation. We also show how our universal bound can be used to derive and to generalize other known theorems such as the strong-coupling limit, the adiabatic theorem, and product formulas, which are relevant to quantum-control strategies including the Zeno control and the dynamical decoupling. Finally, we prove generalized versions of the Trotter product formula, extending its validity beyond the standard scaling assumption.
Original language | English |
---|---|
Article number | 737 |
Pages (from-to) | 1-53 |
Number of pages | 53 |
Journal | Quantum |
Volume | 6 |
DOIs | |
Publication status | Published - 6 Jun 2022 |
Bibliographical note
Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Fingerprint
Dive into the research topics of 'One bound to rule them all: from Adiabatic to Zeno'. Together they form a unique fingerprint.Projects
- 2 Finished
-
UTS led: Pushing the digital limits in quantum simulation for advanced manufacturing
Langford, N., Dehollain, J., Burgarth, D., Berry, D. & Heyl, M.
26/03/21 → 25/03/24
Project: Research
-