Projects per year
Abstract
The purpose of this paper is two-fold. In Part 1 we introduce a new theory of operadic categories and their operads. This theory is, in our opinion, of an independent value. In Part 2 we use this new theory together with our previous results to prove that multiplicative 1-operads in duoidal categories admit, under some mild conditions on the underlying monoidal category, natural actions of contractible 2-operads. The result of D. Tamarkin on the structure of dg-categories, as well as the classical Deligne conjecture for the Hochschild cohomology, is a particular case of this statement.
Original language | English |
---|---|
Pages (from-to) | 1630-1687 |
Number of pages | 58 |
Journal | Advances in Mathematics |
Volume | 285 |
DOIs | |
Publication status | Published - 5 Nov 2015 |
Fingerprint
Dive into the research topics of 'Operadic categories and duoidal Deligne's conjecture'. Together they form a unique fingerprint.Projects
- 1 Finished