Abstract
The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
Original language | English |
---|---|
Article number | P01013 |
Pages (from-to) | 1-54 |
Number of pages | 55 |
Journal | Journal of Instrumentation |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2022 |
Externally published | Yes |
Bibliographical note
Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Charge transport and multiplication in solid media
- Particle tracking detectors (Solid-state detectors)
- Radiation damage to detector materials (solid state)
- Solid state detectors
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of Instrumentation, Vol. 17, No. 1, P01013, 01.2022, p. 1-54.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Operation and performance of the ATLAS semiconductor tracker in LHC Run 2
AU - The ATLAS collaboration
AU - Aad, G.
AU - Abbott, B.
AU - Abbott, D. C.
AU - Abud, A. Abed
AU - Abeling, K.
AU - Abhayasinghe, D. K.
AU - Abidi, S. H.
AU - Aboulhorma, A.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Hoffman, A. C.Abusleme
AU - Acharya, B. S.
AU - Achkar, B.
AU - Adam, L.
AU - Bourdarios, C. Adam
AU - Adamczyk, L.
AU - Adamek, L.
AU - Addepalli, S. V.
AU - Adelman, J.
AU - Adiguzel, A.
AU - Adorni, S.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agapopoulou, C.
AU - Agaras, M. N.
AU - Agarwala, J.
AU - Aggarwal, A.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmad, A.
AU - Ahmadov, F.
AU - Ahmed, W. S.
AU - Ai, X.
AU - Aielli, G.
AU - Aizenberg, I.
AU - Akatsuka, S.
AU - Akbiyik, M.
AU - Åkesson, T. P.A.
AU - Akimov, A. V.
AU - Al Khoury, K.
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Verzini, M. J.Alconada
AU - Alderweireldt, S.
AU - Aleksa, M.
AU - Aleksandrov, I. N.
AU - Alexa, C.
AU - Alexopoulos, T.
AU - Alfonsi, A.
AU - Alfonsi, F.
AU - Alhroob, M.
AU - Ali, B.
AU - Ali, S.
AU - Aliev, M.
AU - Alimonti, G.
AU - Allaire, C.
AU - Allbrooke, B. M.M.
AU - Allport, P. P.
AU - Aloisio, A.
AU - Alonso, F.
AU - Alpigiani, C.
AU - Camelia, E. Alunno
AU - Estevez, M. Alvarez
AU - Alviggi, M. G.
AU - Coutinho, Y. Amaral
AU - Ambler, A.
AU - Ambroz, L.
AU - Amelung, C.
AU - Amidei, D.
AU - Dos Santos, S. P.Amor
AU - Amoroso, S.
AU - Amos, K. R.
AU - Amrouche, C. S.
AU - Ananiev, V.
AU - Anastopoulos, C.
AU - Andari, N.
AU - Andeen, T.
AU - Anders, J. K.
AU - Andrean, S. Y.
AU - Andreazza, A.
AU - Angelidakis, S.
AU - Angerami, A.
AU - Anisenkov, A. V.
AU - Annovi, A.
AU - Antel, C.
AU - Anthony, M. T.
AU - Antipov, E.
AU - Antonelli, M.
AU - Antrim, D. J.A.
AU - Anulli, F.
AU - Aoki, M.
AU - Pozo, J. A.Aparisi
AU - Aparo, M. A.
AU - Bella, L. Aperio
AU - Aranzabal, N.
AU - Ferraz, V. Araujo
AU - Arcangeletti, C.
AU - Arce, A. T.H.
AU - Arena, E.
AU - Arguin, J. F.
AU - Argyropoulos, S.
AU - Arling, J. H.
AU - Armbruster, A. J.
AU - Armstrong, A.
AU - Arnaez, O.
AU - Arnold, H.
AU - Tame, Z. P.Arrubarrena
AU - Artoni, G.
AU - Asada, H.
AU - Asai, K.
AU - Asai, S.
AU - Asbah, N. A.
AU - Asimakopoulou, E. M.
AU - Asquith, L.
AU - Assahsah, J.
AU - Assamagan, K.
AU - Astalos, R.
AU - Atkin, R. J.
AU - Atkinson, M.
AU - Atlay, N. B.
AU - Atmani, H.
AU - Atmasiddha, P. A.
AU - Augsten, K.
AU - Auricchio, S.
AU - Austrup, V. A.
AU - Avner, G.
AU - Avolio, G.
AU - Ayoub, M. K.
AU - Azuelos, G.
AU - Babal, D.
AU - Bachacou, H.
AU - Bachas, K.
AU - Bachiu, A.
AU - Backman, F.
AU - Badea, A.
AU - Bagnaia, P.
AU - Bahrasemani, H.
AU - Bailey, A. J.
AU - Bailey, V. R.
AU - Baines, J. T.
AU - Bakalis, C.
AU - Baker, O. K.
AU - Bakker, P. J.
AU - Bakos, E.
AU - Gupta, D. Bakshi
AU - Balaji, S.
AU - Balasubramanian, R.
AU - Baldin, E. M.
AU - Balek, P.
AU - Ballabene, E.
AU - Balli, F.
AU - Balunas, W. K.
AU - Balz, J.
AU - Banas, E.
AU - Bandieramonte, M.
AU - Bandyopadhyay, A.
AU - Bansal, S.
AU - Barak, L.
AU - Barberio, E. L.
AU - Barberis, D.
AU - Barbero, M.
AU - Barbour, G.
AU - Barends, K. N.
AU - Barillari, T.
AU - Barisits, M. S.
AU - Barkeloo, J.
AU - Barklow, T.
AU - Barnett, B. M.
AU - Barnett, R. M.
AU - Baroncelli, A.
AU - Barone, G.
AU - Barr, A. J.
AU - Navarro, L. Barranco
AU - Barreiro, F.
AU - da Costa, J. Barreiro Guimarães
AU - Barron, U.
AU - Barsov, S.
AU - Bartels, F.
AU - Bartoldus, R.
AU - Bartolini, G.
AU - Barton, A. E.
AU - Bartos, P.
AU - Basalaev, A.
AU - Basan, A.
AU - Baselga, M.
AU - Bashta, I.
AU - Bassalat, A.
AU - Basso, M. J.
AU - Basson, C. R.
AU - Bates, R. L.
AU - Batlamous, S.
AU - Batley, J. R.
AU - Batool, B.
AU - Battaglia, M.
AU - Bauce, M.
AU - Bauer, F.
AU - Bauer, P.
AU - Bawa, H. S.
AU - Bayirli, A.
AU - Beacham, J. B.
AU - Beau, T.
AU - Beauchemin, P. H.
AU - Becherer, F.
AU - Bechtle, P.
AU - Beck, H. P.
AU - Becker, K.
AU - Becot, C.
AU - Beddall, A. J.
AU - Bednyakov, V. A.
AU - Bee, C. P.
AU - Beermann, T. A.
AU - Begalli, M.
AU - Begel, M.
AU - Behera, A.
AU - Behr, J. K.
AU - da Cruz E Silva, C. Beirao
AU - Beirer, J. F.
AU - Beisiegel, F.
AU - Belfkir, M.
AU - Bella, G.
AU - Bellagamba, L.
AU - Bellerive, A.
AU - Bellos, P.
AU - Beloborodov, K.
AU - Belotskiy, K.
AU - Belyaev, N. L.
AU - Benchekroun, D.
AU - Benhammou, Y.
AU - Benjamin, D. P.
AU - Benoit, M.
AU - Bensinger, J. R.
AU - Bentvelsen, S.
AU - Beresford, L.
AU - Beretta, M.
AU - Berge, D.
AU - Kuutmann, E. Bergeaas
AU - Berger, N.
AU - Bergmann, B.
AU - Bergsten, L. J.
AU - Beringer, J.
AU - Berlendis, S.
AU - Bernardi, G.
AU - Bernius, C.
AU - Bernlochner, F. U.
AU - Berry, T.
AU - Berta, P.
AU - Shojaii, J.
N1 - Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2022/1
Y1 - 2022/1
N2 - The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
AB - The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
KW - Charge transport and multiplication in solid media
KW - Particle tracking detectors (Solid-state detectors)
KW - Radiation damage to detector materials (solid state)
KW - Solid state detectors
UR - http://www.scopus.com/inward/record.url?scp=85124139113&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/17/01/P01013
DO - 10.1088/1748-0221/17/01/P01013
M3 - Article
AN - SCOPUS:85124139113
SN - 1748-0221
VL - 17
SP - 1
EP - 54
JO - Journal of Instrumentation
JF - Journal of Instrumentation
IS - 1
M1 - P01013
ER -