Optical imaging of cholylglycine by using liquid crystal droplet patterns on solid surfaces

Yibin Wei, Chang-Hyun Jang

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Determining cholylglycine (CG) levels is of great importance in the detection of liver abnormalities. In this study, we present a novel liquid–crystal (LC)-based method assisted with cholylglycine hydrolase (CGH) for the optical detection of CG levels. The detection method is based on the disruption of the orientations of a nematic LC, 4-cyano-4′-pentylbiphenyl (5CB), doped with dodecyl aldehyde. Aldehyde-doped 5CB droplets were placed on pre-treated glass slides and patterned with solutions of interest. When in contact with a small drop of a CG aqueous solution, bright fan-shaped LC droplet patterns were observed under polarizing optical microscopy, indicating a planar orientation of LC at the aqueous/LC interface. However, aldehyde with short-alkyl chain couples with glycine released from the enzymatic reaction between CG and CGH forming amphiphilic Schiff bases, which display dark cross patterns of LC, suggesting a homeotropic orientation of the LC. This system may offer a highly sensitive and methodologically simple approach to determine CG levels for clinical diagnostics and commercial applications.

Original languageEnglish
Pages (from-to)2033-2040
Number of pages8
JournalJournal of Materials Science
Issue number4
Publication statusPublished - Feb 2016
Externally publishedYes


  • liquid crystal
  • Schiff base
  • cholic acid
  • polarize optic microscopy
  • orientational transition


Dive into the research topics of 'Optical imaging of cholylglycine by using liquid crystal droplet patterns on solid surfaces'. Together they form a unique fingerprint.

Cite this