TY - JOUR
T1 - Optical system assessment for design
T2 - numerical ray tracing in the Gaussian pupil
AU - Forbes, G. W.
PY - 1988
Y1 - 1988
N2 - The continuing rapid increase in available computing power has not reduced the importance of efficient methods of optical system assessment for automatic lens design. On the contrary, the new capabilities simply show that truly automatic optical design will eventually be accomplished. It is proposed that the merit of a system-assessment scheme be measured in terms of the accuracy of its estimation of the overall performance of a proposed system as a function of the amount of work done (e.g., number of rays traced). By using this criterion, a number of schemes based on ray tracing are compared, and some highly efficient assessment procedures are developed. As a simplifying approximation, the effects of vignetting and pupil distortion are ignored here. The key to the most-effective methods lies in coupling appropriate coordinates to Gaussian quadrature schemes. Appropriate coordinate systems are those for which the relevant integrands (either wave-front errors or transverse intercept errors) take the form of smooth functions. The resulting methods for system assessment are typically at least an order of magnitude more efficient than comparatively simple schemes.
AB - The continuing rapid increase in available computing power has not reduced the importance of efficient methods of optical system assessment for automatic lens design. On the contrary, the new capabilities simply show that truly automatic optical design will eventually be accomplished. It is proposed that the merit of a system-assessment scheme be measured in terms of the accuracy of its estimation of the overall performance of a proposed system as a function of the amount of work done (e.g., number of rays traced). By using this criterion, a number of schemes based on ray tracing are compared, and some highly efficient assessment procedures are developed. As a simplifying approximation, the effects of vignetting and pupil distortion are ignored here. The key to the most-effective methods lies in coupling appropriate coordinates to Gaussian quadrature schemes. Appropriate coordinate systems are those for which the relevant integrands (either wave-front errors or transverse intercept errors) take the form of smooth functions. The resulting methods for system assessment are typically at least an order of magnitude more efficient than comparatively simple schemes.
UR - http://www.scopus.com/inward/record.url?scp=0038369359&partnerID=8YFLogxK
U2 - 10.1364/JOSAA.5.001943
DO - 10.1364/JOSAA.5.001943
M3 - Article
AN - SCOPUS:0038369359
SN - 1084-7529
VL - 5
SP - 1943
EP - 1956
JO - Journal of the Optical Society of America A: Optics and Image Science, and Vision
JF - Journal of the Optical Society of America A: Optics and Image Science, and Vision
IS - 11
ER -