Optically resonant bulk heterojunction PbS quantum dot solar cell

Stefan W. Tabernig*, Lin Yuan, Andrea Cordaro, Zhi Li Teh, Yijun Gao, Robert J. Patterson, Andreas Pusch, Shujuan Huang, Albert Polman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
126 Downloads (Pure)

Abstract

We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p-n junctions. The nanostructures yield strong light-matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron transport layer. The nanoholes are infiltrated with PbS quantum dots (QDs) to form a nanopatterned depleted heterojunction. Optical simulations show that the absorption per unit volume in the cylindrical QD absorber layer is enhanced by 19.5% compared to a planar reference. This is achieved for a square array of QD nanopillars of 330 nm height and 320 nm diameter, with a pitch of 500 nm on top of a residual QD layer of 70 nm, surrounded by ZnO. Electronic simulations show that the patterning results in a current gain of 3.2 mA/cm2 and a slight gain in voltage, yielding an efficiency gain of 0.4%. Our simulations further show that the fill factor is highly sensitive to the patterned structure. This is explained by the electric field strength varying strongly across the patterned absorber. We outline a path toward further optimized optically resonant nanopattern geometries with enhanced carrier collection properties. We demonstrate a 0.74 mA/cm2 current gain for a patterned cell compared to a planar cell in experiments, owing to a much improved infrared response, as predicted by our simulations.

[Graphic presents]

Original languageEnglish
Pages (from-to)13750-13760
Number of pages11
JournalACS Nano
Volume16
Issue number9
Early online date29 Aug 2022
DOIs
Publication statusPublished - 27 Sept 2022

Bibliographical note

Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • bulk heterojunction
  • light trapping
  • quantum dot solar cells
  • charge-carrier extraction
  • nanoimprint
  • generation profiles
  • optoelectronic enhancement

Fingerprint

Dive into the research topics of 'Optically resonant bulk heterojunction PbS quantum dot solar cell'. Together they form a unique fingerprint.

Cite this