Optimal SINR-based coverage in poisson cellular networks with power density constraints

Tharaka Samarasinghe, Hazer Inaltekin, Jamie S. Evans

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contribution

5 Citations (Scopus)

Abstract

This paper studies coverage maximization for cellular networks in which base station (BS) locations are modeled using a homogenous spatial Poisson point process, and user locations are arbitrary. A user is covered for communication if its received signal-to-interference-plus-noise-ratio (SINR) is above a given threshold value. Two coverage models are considered. In the first model, the coverage of a user is determined based on the received SINR only from the nearest BS. The nearest BS happens to be the BS maximizing the received SINR without fading. In the second model, on the other hand, the coverage of a user is determined based on the maximum SINR from all BSs in the network. The objective is to maximize the coverage probability under the constraints on transmit power density (per unit area). Using stochastic geometry, coverage probability expressions for both coverage models are obtained. Using these expressions, bounds on the coverage maximizing power per BS and BS density are obtained. These bounds truncate the search space of the optimization problem, and thereby simplify the numerical evaluation of optimum BS power and density values considerably. All results are derived for general bounded path loss models satisfying some mild conditions. Specific applications are also illustrated to provide further insights into the optimization problem of interest.

Original languageEnglish
Title of host publication2013 IEEE 78th Vehicular Technology Conference (VTC Fall)
Place of PublicationPiscataway, NJ
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages5
ISBN (Electronic)9781467361873
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 IEEE 78th Vehicular Technology Conference, VTC Fall 2013 - Las Vegas, NV, United States
Duration: 2 Sep 20135 Sep 2013

Publication series

Name
ISSN (Print)1090-3038

Other

Other2013 IEEE 78th Vehicular Technology Conference, VTC Fall 2013
CountryUnited States
CityLas Vegas, NV
Period2/09/135/09/13

Fingerprint Dive into the research topics of 'Optimal SINR-based coverage in poisson cellular networks with power density constraints'. Together they form a unique fingerprint.

Cite this