Optimization of deep learning-based BSIM-CMG I-V parameter extraction in seconds

Fredo Chavez, Ming-Yen Kao, Chenming Hu, Sourabh Khandelwal

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

5 Citations (Scopus)

Abstract

A deep learning-based parameter extraction for industry standard BSIM-CMG compact model is presented in this paper. A Monte-Carlo simulation varying key BSIM-CMG parameters was performed to create the 1 million I-V sweep data for training. A deep Learning model is trained with drain current ID as an input and the BSIM-CMG parameters as the output. The trained neural network was able to successfully model TCAD I-V data. The results show very promising capability of the deep learning-based parameter extraction to develop compact models within seconds with less or comparable error compared to traditional manual parameter extraction.

Original languageEnglish
Title of host publication2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)
Place of PublicationPiscataway, NJ
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages124-126
Number of pages3
ISBN (Electronic)9781665466493, 9781665466486
ISBN (Print)9781665466509
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2022 - Busan, Korea, Republic of
Duration: 29 Aug 202231 Aug 2022

Conference

Conference2022 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2022
Country/TerritoryKorea, Republic of
CityBusan
Period29/08/2231/08/22

Keywords

  • Parameter Extraction
  • BSIM-CMG
  • FinFET
  • deep learning
  • compact model

Fingerprint

Dive into the research topics of 'Optimization of deep learning-based BSIM-CMG I-V parameter extraction in seconds'. Together they form a unique fingerprint.

Cite this