TY - GEN
T1 - Optimum uplink power control under power and interference constraints
AU - Yuksekkaya, Baris
AU - Inaltekin, Hazer
AU - Toker, Cenk
PY - 2013
Y1 - 2013
N2 - This paper considers optimum allocation of transmission powers in next generation networks. The proposed framework is general enough to cover both emerging heterogeneous network (HetNet) architectures and cognitive radio (CR) networks. There are two types of users in our model. Type 1 users (T1U) represent either femtocell users in a HetNet, or secondary users in a CR network. Type 2 users (T2U) represent either macrocell users in a HetNet, or primary users in a CR network. T1Us share the same frequency band with T2Us, and they form an uplink to their intended base station (i.e., either the femtocell base station or the secondary base station) while causing interference to T2Us. The optimum power allocation strategy maximizing the aggregate communication rate of T1Us is found under individual transmission power constraints and a total interference power constraint at T2Us. It is shown that the optimum power allocation exhibits a binary structure, which means links are either "on" or "off", up to at most one exceptional fractional power level. Further, it is shown that T1Us transmitting at positive power correspond to the ones having better "joint" power and interference channel gains. Applications of these results are illustrated for well-known fading models such as Rayleigh, Rician-K, and Nakagami-m fading.
AB - This paper considers optimum allocation of transmission powers in next generation networks. The proposed framework is general enough to cover both emerging heterogeneous network (HetNet) architectures and cognitive radio (CR) networks. There are two types of users in our model. Type 1 users (T1U) represent either femtocell users in a HetNet, or secondary users in a CR network. Type 2 users (T2U) represent either macrocell users in a HetNet, or primary users in a CR network. T1Us share the same frequency band with T2Us, and they form an uplink to their intended base station (i.e., either the femtocell base station or the secondary base station) while causing interference to T2Us. The optimum power allocation strategy maximizing the aggregate communication rate of T1Us is found under individual transmission power constraints and a total interference power constraint at T2Us. It is shown that the optimum power allocation exhibits a binary structure, which means links are either "on" or "off", up to at most one exceptional fractional power level. Further, it is shown that T1Us transmitting at positive power correspond to the ones having better "joint" power and interference channel gains. Applications of these results are illustrated for well-known fading models such as Rayleigh, Rician-K, and Nakagami-m fading.
UR - http://www.scopus.com/inward/record.url?scp=84893221436&partnerID=8YFLogxK
U2 - 10.1109/VTCFall.2013.6692337
DO - 10.1109/VTCFall.2013.6692337
M3 - Conference proceeding contribution
AN - SCOPUS:84893221436
BT - 2013 IEEE 78th Vehicular Technology Conference (VTC Fall)
PB - Institute of Electrical and Electronics Engineers (IEEE)
CY - Piscataway, NJ
T2 - 2013 IEEE 78th Vehicular Technology Conference, VTC Fall 2013
Y2 - 2 September 2013 through 5 September 2013
ER -