Organometallic Single-Molecule Electronics: Tuning Electron Transport through X(diphosphine)(2)FeC4Fe(diphosphine)(2)X Building Blocks by Varying the Fe-X-Au Anchoring Scheme from Coordinative to Covalent

Franziska Lissel, Florian Schwarz, Olivier Blacque, Heike Riel, Emanuel Lörtscher*, Koushik Venkatesan, Heinz Berke

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)

Abstract

A series of X(depe)2FeC≡C-C≡CFe(depe)2X complexes (depe =1,2-bis(diethylphosphino)ethane; X = I 1, NCMe 2, N2 3, C2H 4, C2SnMe3 5, C4SnMe3 6, NCSe 7, NCS 8, CN 9, SH 10, and NO2 11) was designed to study the influence of the anchor group on organometallic molecular transport junctions to achieve high-conductive molecular wires. The FeC4Fe core is electronically functional due to the redox-active Fe centers and sp-bridging ligands allowing a strong electronic delocalization. 1-11 were characterized by elemental analyses, X-ray diffraction, cyclic voltammetry, NMR, IR, and Raman spectroscopy. DFT calculations on model compounds gave the HOMO/LUMO energies. 5-9 were investigated in mechanically controllable break-junctions. For 9, unincisive features at 8.1 × 10-7 G0 indicate that sterical reasons prevent stable junctions to form or that the coordinative binding motif prohibits electron injection. 7 and 8 with the hitherto unexploited coordinatively binding end groups NCSe and NCS yielded currents of 1.3 × 10-9 A (7) and 1.8 × 10-10 A (8) at ±1.0 V. The SnMe3 in 5 and 6 splits off, yielding junctions with covalent C-Au bonds and currents of 6.5 × 10-7 A (Au-5′-Au) or 2.1 × 10-7 A (Au-6′-Au). Despite of a length of almost 2 nm, the Au-5′-Au junction reaches 1% of the maximum current assuming one conductance channel in quantum point contacts. Additionally, the current noise in the transport data is considerably reduced for the covalent C-Au coupling compared to the coordinative anchoring of 7-9, endorsing C-Au coupled organometallic complexes as excellent candidates for low-ohmic molecular wires.

Original languageEnglish
Pages (from-to)14560-14569
Number of pages10
JournalJournal of the American Chemical Society
Volume136
Issue number41
DOIs
Publication statusPublished - 15 Oct 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Organometallic Single-Molecule Electronics: Tuning Electron Transport through X(diphosphine)(2)FeC4Fe(diphosphine)(2)X Building Blocks by Varying the Fe-X-Au Anchoring Scheme from Coordinative to Covalent'. Together they form a unique fingerprint.

Cite this