TY - JOUR
T1 - p16INK4a-induced senescence is disabled by melanoma-associated mutations
AU - Haferkamp, Sebastian
AU - Becker, Therese M.
AU - Scurr, Lyndee L.
AU - Kefford, Richard F.
AU - Rizos, Helen
PY - 2008
Y1 - 2008
N2 - The p16INK4a-Rb tumour suppressor pathway is required for the initiation and maintenance of cellular senescence, a state of permanent growth arrest that acts as a natural barrier against cancer progression. Senescence can be overcome if the pathway is not fully engaged, and this may occur when p16INK4a is inactivated. p16INK4a is frequently altered in human cancer and germline mutations affecting p16INK4a have been linked to melanoma susceptibility. To characterize the functions of melanoma-associated p16INK4a mutations, in terms of promoting proliferative arrest and initiating senescence, we utilized an inducible expression system in a melanoma cell model. We show that wild-type p16INK4a promotes rapid cell cycle arrest that leads to a senescence programme characterized by the appearance of chromatin foci, activation of acidic β-galactosidase activity, p53.independence and Rb.dependence. Accumulation of wild-type p16INK4a also promoted cell enlargement and extensive vacuolization independent of Rb status. In contrast, the highly penetrant p16INK4a variants, R24P and A36P failed to arrest cell proliferation and did not initiate senescence. We also show that overexpression of CDK4, or its homologue CDK6, but not the downstream kinase, CDK2, inhibited the ability of wild-type p16INK4a to promote cell cycle arrest and senescence. Our data provide the first evidence that p16INK4a can initiate a CDK4/6-dependent autonomous senescence programme that is disabled by inherited melanoma-associated mutations.
AB - The p16INK4a-Rb tumour suppressor pathway is required for the initiation and maintenance of cellular senescence, a state of permanent growth arrest that acts as a natural barrier against cancer progression. Senescence can be overcome if the pathway is not fully engaged, and this may occur when p16INK4a is inactivated. p16INK4a is frequently altered in human cancer and germline mutations affecting p16INK4a have been linked to melanoma susceptibility. To characterize the functions of melanoma-associated p16INK4a mutations, in terms of promoting proliferative arrest and initiating senescence, we utilized an inducible expression system in a melanoma cell model. We show that wild-type p16INK4a promotes rapid cell cycle arrest that leads to a senescence programme characterized by the appearance of chromatin foci, activation of acidic β-galactosidase activity, p53.independence and Rb.dependence. Accumulation of wild-type p16INK4a also promoted cell enlargement and extensive vacuolization independent of Rb status. In contrast, the highly penetrant p16INK4a variants, R24P and A36P failed to arrest cell proliferation and did not initiate senescence. We also show that overexpression of CDK4, or its homologue CDK6, but not the downstream kinase, CDK2, inhibited the ability of wild-type p16INK4a to promote cell cycle arrest and senescence. Our data provide the first evidence that p16INK4a can initiate a CDK4/6-dependent autonomous senescence programme that is disabled by inherited melanoma-associated mutations.
UR - http://www.scopus.com/inward/record.url?scp=52449115597&partnerID=8YFLogxK
U2 - 10.1111/j.1474-9726.2008.00422.x
DO - 10.1111/j.1474-9726.2008.00422.x
M3 - Article
C2 - 18843795
AN - SCOPUS:52449115597
SN - 1474-9718
VL - 7
SP - 733
EP - 745
JO - Aging Cell
JF - Aging Cell
IS - 5
ER -