Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event

W. K. Soh, I. J. Wright, K. L. Bacon, T. I. Lenz, M. Steinthorsdottir, A. C. Parnell, J. C. McElwain

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)


    Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-Time case study to evaluate the impact of a well-constrained CO 2-induced global warming event on the ecological functioning of dominant plant communities. We use leaf mass per area (LMA), a widely used trait in modern plant ecology, to infer the palaeoecological strategy of fossil plant taxa. We show that palaeo-LMA can be inferred from fossil leaf cuticles based on a tight relationship between LMA and cuticle thickness observed among extant gymnosperms. Application of this new palaeo-LMA proxy to fossil gymnosperms from East Greenland reveals significant shifts in the dominant ecological strategies of vegetation found across the Triassic-Jurassic transition. Late Triassic forests, dominated by low-LMA taxa with inferred high transpiration rates and short leaf lifespans, were replaced in the Early Jurassic by forests dominated by high-LMA taxa that were likely to have slower metabolic rates. We suggest that extreme CO 2-induced global warming selected for taxa with high LMA associated with a stress-Tolerant strategy and that adaptive plasticity in leaf functional traits such as LMA contributed to post-warming ecological success.

    Original languageEnglish
    Article number17104
    Pages (from-to)1-8
    Number of pages8
    JournalNature Plants
    Publication statusPublished - 17 Jul 2017

    Bibliographical note

    Corrigendum can be found at Nature Plants volume 3, Article number: 17126 (2017).


    Dive into the research topics of 'Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event'. Together they form a unique fingerprint.

    Cite this