Abstract
Summary We propose a new approach to the selection of partially linear models based on the conditional expected prediction square loss function, which is estimated using the bootstrap. Because of the different speeds of convergence of the linear and the nonlinear parts, a key idea is to select each part separately. In the first step, we select the nonlinear components using an 'm-out-of-n' residual bootstrap that ensures good properties for the nonparametric bootstrap estimator. The second step selects the linear components from the remaining explanatory variables, and the non-zero parameters are selected based on a two-level residual bootstrap. We show that the model selection procedure is consistent under some conditions, and our simulations suggest that it selects the true model most often than the other selection procedures considered.
Original language | English |
---|---|
Pages (from-to) | 183-200 |
Number of pages | 18 |
Journal | Australian and New Zealand Journal of Statistics |
Volume | 51 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2009 |
Externally published | Yes |
Keywords
- consistent model selection
- partially linear model
- residual bootstrap model selection