TY - JOUR
T1 - Pd/CNT catalysts for glycerol electro-oxidation
T2 - effect of Pd loading on production of valuable chemical products
AU - Ahmad, Muhammad Sheraz
AU - Cheng, Chin Kui
AU - Kumar, Ravinder
AU - Singh, Sharanjit
AU - Saeed, Khater Ahmed
AU - Ong, Huei Ruey
AU - Abdullah, Hamidah
AU - Khan, Maksudur Rahman
PY - 2020/6
Y1 - 2020/6
N2 - Glycerol (C3H8O3), a waste product of biodiesel, is considered as a suitable substrate for electro-oxidation process to generate high value-added products. A suitable active catalyst could improve the yield of desirable organic compounds from electro-oxidation of glycerol. In this work, palladium nanoparticles supported over activated multi-walled carbon nanotubes (MWCNTs) with varying loadings of 5 %–40 % were prepared using chemical reduction method and used to study their potential for electro-oxidation of glycerol to produce various high value-added products. The catalysts were characterized by different physicochemical methods, such as X-ray diffraction (XRD), N2 adsorption-desorption, and Transmission electron microscopy (TEM), whereas the electro-oxidation activity of the catalysts was analysed using cyclic voltammetry (CV) and chronoamperometry (CA), and the products were identified by high performance liquid chromatography (HPLC). The electrochemical surface area (SESA) and mass activity (MA) were increased from 176.98 m2 g−1 to 282.29 m2 g−1 and 12.22 mA mg−1 to 49.53 mA mg−1 by increasing the Pd-loading from 5 % to 20 %, respectively. While the further increase to 40 % Pd loading, the SESA and MA values decreased to 231.45 m2 g−1 and 47.63 mA mg−1respectively. The results found that the optimum 20 % Pd-loading showed the excellent electrochemical properties due to uniform distribution of Pd-metal particles over MWCNTs. High performance liquid chromatography (HPLC) showed the tartronic acid, glyceric acid and glyceraldehyde as dominant products. Mechanism of the reaction has also been proposed based on product distribution.
AB - Glycerol (C3H8O3), a waste product of biodiesel, is considered as a suitable substrate for electro-oxidation process to generate high value-added products. A suitable active catalyst could improve the yield of desirable organic compounds from electro-oxidation of glycerol. In this work, palladium nanoparticles supported over activated multi-walled carbon nanotubes (MWCNTs) with varying loadings of 5 %–40 % were prepared using chemical reduction method and used to study their potential for electro-oxidation of glycerol to produce various high value-added products. The catalysts were characterized by different physicochemical methods, such as X-ray diffraction (XRD), N2 adsorption-desorption, and Transmission electron microscopy (TEM), whereas the electro-oxidation activity of the catalysts was analysed using cyclic voltammetry (CV) and chronoamperometry (CA), and the products were identified by high performance liquid chromatography (HPLC). The electrochemical surface area (SESA) and mass activity (MA) were increased from 176.98 m2 g−1 to 282.29 m2 g−1 and 12.22 mA mg−1 to 49.53 mA mg−1 by increasing the Pd-loading from 5 % to 20 %, respectively. While the further increase to 40 % Pd loading, the SESA and MA values decreased to 231.45 m2 g−1 and 47.63 mA mg−1respectively. The results found that the optimum 20 % Pd-loading showed the excellent electrochemical properties due to uniform distribution of Pd-metal particles over MWCNTs. High performance liquid chromatography (HPLC) showed the tartronic acid, glyceric acid and glyceraldehyde as dominant products. Mechanism of the reaction has also been proposed based on product distribution.
KW - Pd/MWCNT
KW - electrocatalyst
KW - glycerol oxidation reaction
KW - HPLC
KW - metal loading
UR - http://www.scopus.com/inward/record.url?scp=85078877807&partnerID=8YFLogxK
U2 - 10.1002/elan.201900611
DO - 10.1002/elan.201900611
M3 - Article
AN - SCOPUS:85078877807
VL - 32
SP - 1139
EP - 1147
JO - Electroanalysis
JF - Electroanalysis
SN - 1040-0397
IS - 6
ER -