Abstract
The explosion of data and transactions demands a creative approach for data processing in a variety of applications. Research on remote memory systems (RMSs), so as to exploit the superior characteristics of dynamic random access memory (DRAM), has been performed for many decades, and today's information explosion galvanizes researchers into shedding new light on the technology. Prior studies have mainly focused on architectural suggestions for such systems, highlighting different design rationale. These studies have shown that choosing the appropriate applications to run on an RMS is important in fully utilizing the advantages of remote memory. This article provides an extensive performance evaluation for various types of data processing applications so as to address the efficacy of an RMS by means of a prototype RMS with reliability functionality. The prototype RMS used is a practical kernel-level RMS that renders large memory data processing feasible. The abstract concept of remote memory was materialized by borrowing unused local memory in commodity PCs via a high speed network capable of Remote Direct Memory Access (RDMA) operations. The prototype RMS uses remote memory without any part of its computation power coming from remote computers. Our experimental results suggest that an RMS can be practical in supporting the rigorous demands of commercial in memory database systems that have high data access locality. Our evaluation also convinces us of the possibility that a reliable RMS can satisfy both the high degree of reliability and efficiency for large memory data processing applications whose data access pattern has high locality.
Original language | English |
---|---|
Pages (from-to) | 325-344 |
Number of pages | 20 |
Journal | Cluster Computing |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - Dec 2011 |
Externally published | Yes |
Keywords
- Large memory data processing
- Main memory databases
- Remote memory system