Abstract
While NAND flash memory is used in a variety of end-user devices, it has a few disadvantages, such as asymmetric speed of read and write operations, inability to in-place updates, among others. To overcome these problems, various flash-aware strategies have been suggested in terms of buffer cache, file system, FTL, and others. Also, the recent development of next-generation nonvolatile memory types such as MRAM, FeRAM, and PRAM provide higher commercial value to Non-Volatile RAM (NVRAM). At today's prices, however, they are not yet cost-effective. In this paper, we suggest the utilization of small-sized, next-generation NVRAM as a write buffer to improve the overall performance of NAND flash memory-based storage systems. We propose various block-based NVRAM write buffer management policies and evaluate the performance improvement of NAND flash memory-based storage systems under each policy. Also, we propose a novel write buffer-aware flash translation layer algorithm, optimistic FTL, which is designed to harmonize well with NVRAM write buffers. Simulation results show that the proposed buffer management policies outperform the traditional page-based LRU algorithm and the proposed optimistic FTL outperforms previous log block-based FTL algorithms, such as BAST and FAST.
Original language | English |
---|---|
Pages (from-to) | 744-758 |
Number of pages | 15 |
Journal | IEEE Transactions on Computers |
Volume | 58 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2009 |
Externally published | Yes |
Keywords
- Flash memory
- Flash translation layer
- Nonvolatile RAM
- Solid-state disk
- Storage device
- Write buffer