Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification

Laura M. Parker, Wayne A. O'Connor, David A. Raftos, Hans Otto Pörtner, Pauline M. Ross

Research output: Contribution to journalArticle

80 Citations (Scopus)
15 Downloads (Pure)

Abstract

Ocean acidification (OA) is predicted to have widespread implications for marine organisms, yet the capacity for species to acclimate or adapt over this century remains unknown. Recent transgenerational studies have shown that for some marine species, exposure of adults to OA can facilitate positive carryover effects to their larval and juvenile offspring that help them to survive in acidifying oceanic conditions. But whether these positive carryover effects can persist into adulthood or the next generation is unknown. Here we tested whether positive carryover effects found in larvae of the oyster, Saccostrea glomerata following transgenerational exposure to elevated CO2, could persist into adulthood and whether subsequent transgenerational exposure of adults to elevated CO2would facilitate similar adaptive responses in the next generation of larvae and juveniles. Following our previous transgenerational exposure of parental adults and first generation (F1) larvae to ambient (385 uatm) and elevated (856 uatm) CO2, newly settled F1 juveniles were transferred to the field at ambient CO2for 14 months, until they reached reproductive maturity. At this time, the F1 adults were returned to the laboratory and the previous transgenerational CO2exposure was repeated to produce F2 offspring. We found that the capacity of adults to regulate extracellular pH at elevated CO2was improved if they had a prior history of transgenerational exposure to elevated CO2. In addition, subsequent transgenerational exposure of these adults led to an increase in the resilience of their larval and juvenile offspring. Offspring with a history of transgenerational exposure to elevated CO2had a lower percentage abnormality, faster development rate, faster shell growth and increased heart rate at elevated CO2compared with F2 offspring with no prior history of exposure to elevated CO2. Our results suggest that positive carryover effects originating during parental and larval exposure will be important in mediating some of the impacts of OA for later life-history stages and generations.

Original languageEnglish
Article numbere0132276
Pages (from-to)1-19
Number of pages19
JournalPLoS ONE
Volume10
Issue number7
DOIs
Publication statusPublished - 6 Jul 2015

Bibliographical note

Copyright the Authors 2015. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint Dive into the research topics of 'Persistence of positive carryover effects in the oyster, <i>Saccostrea glomerata</i>, following transgenerational exposure to ocean acidification'. Together they form a unique fingerprint.

  • Cite this