TY - JOUR
T1 - Phyllosilicate minerals in the hydrothermal mafic-ultramafic-hosted massive-sulfide deposit of Ivanovka (southern Urals)
T2 - Comparison with modern ocean seafloor analogues
AU - Nimis, Paolo
AU - Tesalina, Svetlana G.
AU - Omenetto, Paolo
AU - Tartarotti, Paola
AU - Lerouge, Catherine
PY - 2004/5
Y1 - 2004/5
N2 - We have studied textural relationships and compositions of phyllosilicate minerals in the mafic-ultramafic-hosted massive-sulfide deposit of Ivanovka (Main Uralian Fault Zone, southern Urals). The main hydrothermal phyllosilicate minerals are Mg-rich chlorite, variably ferroan talc, (Mg, Si)-rich and (Ca, Na, K)-poor saponite (stevensite), and serpentine. These minerals occur both as alteration products after mafic volcanics and ultramafic protoliths and, except serpentine, as hydrothermal vein and seafloor mound-like precipitates associated with variable amounts of (Ca, Mg, Fe)-carbonates, quartz and Fe and Cu (Co, Ni) sulfides. Brecciated mafic lithologies underwent pervasive chloritization, while interlayered gabbro sills underwent partial alteration to chlorite + illite ± actinolite ± saponite ± talc-bearing assemblages and later localized deeper alteration to chlorite ± saponite. Ultramafic and mixed ultramafic-mafic breccias were altered to talc-rich rocks with variable amounts of chlorite, carbonate and quartz. Chloritization, locally accompanied by formation of disseminated sulfides, required a high contribution of Mg-rich seawater to the hydrothermal fluid, which could be achieved in a highly permeable, breccia-dominated seafloor. More evolved hydrothermal fluids produced addition of silica, carbonates and further sulfides, and led to local development of saponite after chlorite and widespread replacement of serpentine by talc. The Ivanovka deposit shows many similarities with active and fossil hydrothermal sites on some modern oceanic spreading centers characterized by highly permeable upflow zones. However, given the arc signature of the ore host rocks, the most probable setting for the observed alteration-mineralization patterns is in an early-arc or forearc seafloor-subseafloor environment, characterized by the presence of abundant mafic-ultramafic breccias of tectonic and/or sedimentary origin.
AB - We have studied textural relationships and compositions of phyllosilicate minerals in the mafic-ultramafic-hosted massive-sulfide deposit of Ivanovka (Main Uralian Fault Zone, southern Urals). The main hydrothermal phyllosilicate minerals are Mg-rich chlorite, variably ferroan talc, (Mg, Si)-rich and (Ca, Na, K)-poor saponite (stevensite), and serpentine. These minerals occur both as alteration products after mafic volcanics and ultramafic protoliths and, except serpentine, as hydrothermal vein and seafloor mound-like precipitates associated with variable amounts of (Ca, Mg, Fe)-carbonates, quartz and Fe and Cu (Co, Ni) sulfides. Brecciated mafic lithologies underwent pervasive chloritization, while interlayered gabbro sills underwent partial alteration to chlorite + illite ± actinolite ± saponite ± talc-bearing assemblages and later localized deeper alteration to chlorite ± saponite. Ultramafic and mixed ultramafic-mafic breccias were altered to talc-rich rocks with variable amounts of chlorite, carbonate and quartz. Chloritization, locally accompanied by formation of disseminated sulfides, required a high contribution of Mg-rich seawater to the hydrothermal fluid, which could be achieved in a highly permeable, breccia-dominated seafloor. More evolved hydrothermal fluids produced addition of silica, carbonates and further sulfides, and led to local development of saponite after chlorite and widespread replacement of serpentine by talc. The Ivanovka deposit shows many similarities with active and fossil hydrothermal sites on some modern oceanic spreading centers characterized by highly permeable upflow zones. However, given the arc signature of the ore host rocks, the most probable setting for the observed alteration-mineralization patterns is in an early-arc or forearc seafloor-subseafloor environment, characterized by the presence of abundant mafic-ultramafic breccias of tectonic and/or sedimentary origin.
UR - http://www.scopus.com/inward/record.url?scp=2542435119&partnerID=8YFLogxK
U2 - 10.1007/s00410-004-0565-3
DO - 10.1007/s00410-004-0565-3
M3 - Article
AN - SCOPUS:2542435119
SN - 0010-7999
VL - 147
SP - 363
EP - 383
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
IS - 3
ER -