Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks

Shaocheng Ji*, Tongbin Shao, Matthew H. Salisbury, Shengsi Sun, Katsuyoshi Michibayashi, Weihua Zhao, Changxing Long, Fenghua Liang, Takako Satsukawa

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    40 Citations (Scopus)

    Abstract

    Fractional crystallization and crystal segregation controlled by settling or floating of minerals during the cooling of magma can lead to layered structures in mafic and ultramafic intrusions in continental and oceanic settings in the lower crust. Thus, the seismic properties and fabrics of layered intrusions must be calibrated to gain insight into the origin of seismic reflections and anisotropy in the deep crust. To this end, we have measured P and S wave velocities and anisotropy in 17 plagioclase-rich mafic igneous rocks such as anorthosite and gabbro at hydrostatic pressures up to 650 MPa. Anorthosites and gabbroic anorthosites containing >80 vol% plagioclase and gabbros consisting of nearly equal modal contents of plagioclase and pyroxene display distinctive seismic anisotropy patterns: Vp(Z)/Vp(Y) ≥ 1 and Vp(Z)/Vp(X) ≥ 1 for anorthosites while 0.8 < Vp(Z)/Vp(Y) ≤ 1 and 0.8 < Vp(Z)/Vp(X) ≤ 1 for gabbros. Amphibolites lie in the same domain as gabbros, but show a significantly stronger tendency of Vp(X) > Vp(Y) than the gabbros. Laminated anorthosites with Vp(X) ≈ Vp(Y) Vp(Z) display a strong crystal preferred orientation (CPO) of plagioclase whose (010) planes and [100] and [001] directions parallel to the foliation. For the gabbros and amphibolites characterized by Vp(X) ≈ Vp(Y) > Vp(Z) and Vp(X) > Vp(Y) > Vp(Z), respectively, pyroxene and amphibole play a dominant role over plagioclase in the formation of seismic anisotropy. The Poisson's ratio calculated using the average P and S wave velocities from the three principal propagation-polarization directions (X, Y, and Z) of a highly anisotropic anorthosite cannot represent the value of a true isotropic equivalent. The CPO-induced anisotropy enhances and decreases the foliation-normal incidence reflectivity at gabbro-peridotite and anorthosite-peridotite interfaces, respectively.

    Original languageEnglish
    Pages (from-to)8064-8088
    Number of pages25
    JournalJournal of Geophysical Research: Solid Earth
    Volume119
    Issue number11
    DOIs
    Publication statusPublished - Nov 2014

    Keywords

    • Earth's crust
    • anisotropy
    • fabrics
    • mafic intrusions
    • plagioclase
    • seismic wave velocities

    Fingerprint

    Dive into the research topics of 'Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks'. Together they form a unique fingerprint.

    Cite this