Plant species traits are the predominant control on litter decomposition rates within biomes worldwide

William K. Cornwell, Johannes H C Cornelissen, Kathryn Amatangelo, Ellen Dorrepaal, Valerie T. Eviner, Oscar Godoy, Sarah E. Hobbie, Bart Hoorens, Hiroko Kurokawa, Natalia Pérez-Harguindeguy, Helen M. Quested, Louis S. Santiago, David A. Wardle, Ian J. Wright, Rien Aerts, Steven D. Allison, Peter Van Bodegom, Victor Brovkin, Alex Chatain, Terry V. CallaghanSandra Díaz, Eric Garnier, Diego E. Gurvich, Elena Kazakou, Julia A. Klein, Jenny Read, Peter B. Reich, Nadejda A. Soudzilovskaia, M. Victoria Vaieretti, Mark Westoby

    Research output: Contribution to journalArticlepeer-review

    1725 Citations (Scopus)

    Abstract

    Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.

    Original languageEnglish
    Pages (from-to)1065-1071
    Number of pages7
    JournalEcology Letters
    Volume11
    Issue number10
    DOIs
    Publication statusPublished - Oct 2008

    Fingerprint

    Dive into the research topics of 'Plant species traits are the predominant control on litter decomposition rates within biomes worldwide'. Together they form a unique fingerprint.

    Cite this