Pore size effects on convective flow and diffusion through nanoporous silica gels

Charlotte Hamngren Blomqvist, Christoffer Abrahamsson, Tobias Gebäck, Annika Altskär, Anne-Marie Hermansson, Magnus Nydén, Stefan Gustafsson, Niklas Lorén, Eva Olsson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

[Graphical abstract: The influence of pore size distributions on flow speed was studied in three colloidal silica gels of equal volume fraction but different primary particle size and morphology. Graphic presents]

Material structure has great impact on mass transport properties, a relationship that needs to be understood on several length scales. Describing and controlling the properties of flow through soft materials are both challenges concerning the industrial use of gel structures. This paper reports on how the porous structure in nanoporous materials affects the water transport through them. We used three different silica gels with large differences in the pore sizes but of equal silica concentration. Particle morphology and gel structure were studied using high-resolution transmission electron microscopy and image analysis to estimate the pore size distribution and intrinsic surface area of each gel. The mass transport was studied using a flow measurement setup and nuclear magnetic resonance diffusometry. The average pore size ranged from approximately 500. nm down to approximately 40. nm. An acknowledged limit for convective flow to occur is in the pore size range between 100 and 200. nm. The results verified the existence of a non-linear relationship between pore size and liquid flow at length scales below 500. nm, experimentally. A factor of 4.3 in flow speed separated the coarser gel from the other two, which presented almost identical flow speed data despite a factor 3 in pore size difference. In the setup, the mass transport in the gel with the largest pores was flow dominated, while the mass transport in the finer gels was diffusion dominated. Besides providing new insights into mass transport as a function of pore sizes, we conclude that three-dimensional analysis of the structures is needed for a comprehensive understanding of the correlation between structure and mass transport properties.

Original languageEnglish
Pages (from-to)288-296
Number of pages9
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume484
DOIs
Publication statusPublished - 5 Nov 2015
Externally publishedYes

Keywords

  • Silica gel
  • Model material
  • Nanoporous
  • Mass transport
  • Liquid permeability

Fingerprint

Dive into the research topics of 'Pore size effects on convective flow and diffusion through nanoporous silica gels'. Together they form a unique fingerprint.

Cite this